Handling Missing Values in Local Post-hoc Explainability

被引:1
|
作者
Cinquini, Martina [1 ,2 ]
Giannotti, Fosca [2 ,3 ]
Guidotti, Riccardo [1 ,2 ]
Mattei, Andrea [1 ]
机构
[1] Univ Pisa, Pisa, Italy
[2] ISTI CNR, Pisa, Italy
[3] Scuola Normale Super Pisa, Pisa, Italy
来源
EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT II | 2023年 / 1902卷
基金
英国工程与自然科学研究理事会;
关键词
Explainable AI; Local Post-hoc Explanation; Decision-Making; Missing Values; Missing Data; Data Imputation; MULTIPLE IMPUTATION;
D O I
10.1007/978-3-031-44067-0_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Missing data are quite common in real scenarios when using Artificial Intelligence (AI) systems for decision-making with tabular data and effectively handling them poses a significant challenge for such systems. While some machine learning models used by AI systems can tackle this problem, the existing literature lacks post-hoc explainability approaches able to deal with predictors that encounter missing data. In this paper, we extend a widely used local model-agnostic post-hoc explanation approach that enables explainability in the presence of missing values by incorporating state-of-the-art imputation methods within the explanation process. Since our proposal returns explanations in the form of feature importance, the user will be aware also of the importance of a missing value in a given record for a particular prediction. Extensive experiments show the effectiveness of the proposed method with respect to some baseline solutions relying on traditional data imputation.
引用
收藏
页码:256 / 278
页数:23
相关论文
共 50 条
  • [31] Handling Missing Values with Regularized Iterative Multiple Correspondence Analysis
    Julie Josse
    Marie Chavent
    Benot Liquet
    François Husson
    Journal of Classification, 2012, 29 : 91 - 116
  • [32] XGBoost in handling missing values for life insurance risk prediction
    Deandra Aulia Rusdah
    Hendri Murfi
    SN Applied Sciences, 2020, 2
  • [33] Handling missing values in patient-reported outcome data in the presence of intercurrent events
    Thomassen, Doranne
    Roychoudhury, Satrajit
    Amdal, Cecilie Delphin
    Reynders, Dries
    Musoro, Jammbe Z.
    Sauerbrei, Willi
    Goetghebeur, Els
    le Cessie, Saskia
    SISAQOL IMI Work Package, Rajesh
    BMC MEDICAL RESEARCH METHODOLOGY, 2025, 25 (01)
  • [34] New Insights into Handling Missing Values in Environmental Epidemiological Studies
    Roda, Celina
    Nicolis, Ioannis
    Momas, Isabelle
    Guihenneuc, Chantal
    PLOS ONE, 2014, 9 (09):
  • [35] Handling Missing Values with Regularized Iterative Multiple Correspondence Analysis
    Josse, Julie
    Chavent, Marie
    Liquet, Benot
    Husson, Francois
    JOURNAL OF CLASSIFICATION, 2012, 29 (01) : 91 - 116
  • [36] XGBoost in handling missing values for life insurance risk prediction
    Rusdah, Deandra Aulia
    Murfi, Hendri
    SN APPLIED SCIENCES, 2020, 2 (08):
  • [37] HANDLING MISSING VALUES VIA A NEURAL SELECTIVE INPUT MODEL
    Lopes, Noel
    Ribeiro, Bernardete
    NEURAL NETWORK WORLD, 2012, 22 (04) : 357 - 370
  • [38] Post-hoc vs ante-hoc explanations: xAI design guidelines for data scientists
    Retzlaff, Carl O.
    Angerschmid, Alessa
    Saranti, Anna
    Schneeberger, David
    Roettger, Richard
    Mueller, Heimo
    Holzinger, Andreas
    COGNITIVE SYSTEMS RESEARCH, 2024, 86
  • [39] Measuring Local Assortativity in the Presence of Missing Values
    van der Laan, Jan
    de Jonge, Edwin
    COMPLEX NETWORKS AND THEIR APPLICATIONS VIII, VOL 2, 2020, 882 : 280 - 290
  • [40] Evaluation of Post-hoc XAI Approaches Through Synthetic Tabular Data
    Tritscher, Julian
    Ring, Markus
    Schloer, Daniel
    Hettinger, Lena
    Hotho, Andreas
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISMIS 2020), 2020, 12117 : 422 - 430