Handling Missing Values in Local Post-hoc Explainability

被引:1
|
作者
Cinquini, Martina [1 ,2 ]
Giannotti, Fosca [2 ,3 ]
Guidotti, Riccardo [1 ,2 ]
Mattei, Andrea [1 ]
机构
[1] Univ Pisa, Pisa, Italy
[2] ISTI CNR, Pisa, Italy
[3] Scuola Normale Super Pisa, Pisa, Italy
来源
EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT II | 2023年 / 1902卷
基金
英国工程与自然科学研究理事会;
关键词
Explainable AI; Local Post-hoc Explanation; Decision-Making; Missing Values; Missing Data; Data Imputation; MULTIPLE IMPUTATION;
D O I
10.1007/978-3-031-44067-0_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Missing data are quite common in real scenarios when using Artificial Intelligence (AI) systems for decision-making with tabular data and effectively handling them poses a significant challenge for such systems. While some machine learning models used by AI systems can tackle this problem, the existing literature lacks post-hoc explainability approaches able to deal with predictors that encounter missing data. In this paper, we extend a widely used local model-agnostic post-hoc explanation approach that enables explainability in the presence of missing values by incorporating state-of-the-art imputation methods within the explanation process. Since our proposal returns explanations in the form of feature importance, the user will be aware also of the importance of a missing value in a given record for a particular prediction. Extensive experiments show the effectiveness of the proposed method with respect to some baseline solutions relying on traditional data imputation.
引用
收藏
页码:256 / 278
页数:23
相关论文
共 50 条
  • [21] A novel weighted distance threshold method for handling medical missing values
    Cheng, Ching-Hsue
    Chang, Jing-Rong
    Huang, Hao-Hsuan
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 122 (122)
  • [22] An Empirical Comparison of Interpretable Models to Post-Hoc Explanations
    Mahya, Parisa
    Fuernkranz, Johannes
    AI, 2023, 4 (02) : 426 - 436
  • [23] Handling missing values when applying classification models
    Saar-Tsechansky, Maytal
    Provost, Foster
    JOURNAL OF MACHINE LEARNING RESEARCH, 2007, 8 : 1625 - 1657
  • [24] Handling missing and outliers values by enhanced algorithms for an accurate diabetic classification system
    Ibrahim, Elhossiny
    Shouman, Marwa A.
    Torkey, Hanaa
    El-Sayed, Ayman
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (13) : 20125 - 20147
  • [25] Effective Handling of Missing Values in Datasets for Classification Using Machine Learning Methods
    Palanivinayagam, Ashokkumar
    Damasevicius, Robertas
    INFORMATION, 2023, 14 (02)
  • [26] Evaluating Stability of Post-hoc Explanations for Business Process Predictions
    Velmurugan, Mythreyi
    Ouyang, Chun
    Moreira, Catarina
    Sindhgatta, Renuka
    SERVICE-ORIENTED COMPUTING (ICSOC 2021), 2021, 13121 : 49 - 64
  • [27] Comparing Strategies for Post-Hoc Explanations in Machine Learning Models
    Vij, Aabhas
    Nanjundan, Preethi
    MOBILE COMPUTING AND SUSTAINABLE INFORMATICS, 2022, 68 : 585 - 592
  • [28] Handling missing values in greenhouse microclimate dataset using PCA-SARIMAX model
    Ouamane, M. R.
    Saboni, A.
    Bennis, O.
    Kratz, F.
    Megherbi, H.
    Sanchez-Molina, J. A.
    2021 9TH INTERNATIONAL CONFERENCE ON SYSTEMS AND CONTROL (ICSC'21), 2021, : 191 - 197
  • [29] Handling high-dimensional data with missing values by modern machine learning techniques
    Chen, Sixia
    Xu, Chao
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (03) : 786 - 804
  • [30] Handling missing values: A study of popular imputation packages in R
    Yadav, Madan Lal
    Roychoudhury, Basav
    KNOWLEDGE-BASED SYSTEMS, 2018, 160 : 104 - 118