Handling Missing Values in Local Post-hoc Explainability

被引:1
|
作者
Cinquini, Martina [1 ,2 ]
Giannotti, Fosca [2 ,3 ]
Guidotti, Riccardo [1 ,2 ]
Mattei, Andrea [1 ]
机构
[1] Univ Pisa, Pisa, Italy
[2] ISTI CNR, Pisa, Italy
[3] Scuola Normale Super Pisa, Pisa, Italy
来源
EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT II | 2023年 / 1902卷
基金
英国工程与自然科学研究理事会;
关键词
Explainable AI; Local Post-hoc Explanation; Decision-Making; Missing Values; Missing Data; Data Imputation; MULTIPLE IMPUTATION;
D O I
10.1007/978-3-031-44067-0_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Missing data are quite common in real scenarios when using Artificial Intelligence (AI) systems for decision-making with tabular data and effectively handling them poses a significant challenge for such systems. While some machine learning models used by AI systems can tackle this problem, the existing literature lacks post-hoc explainability approaches able to deal with predictors that encounter missing data. In this paper, we extend a widely used local model-agnostic post-hoc explanation approach that enables explainability in the presence of missing values by incorporating state-of-the-art imputation methods within the explanation process. Since our proposal returns explanations in the form of feature importance, the user will be aware also of the importance of a missing value in a given record for a particular prediction. Extensive experiments show the effectiveness of the proposed method with respect to some baseline solutions relying on traditional data imputation.
引用
收藏
页码:256 / 278
页数:23
相关论文
共 50 条
  • [11] Handling missing values in the MDS-UPDRS
    Goetz, Christopher G.
    Luo, Sheng
    Wang, Lu
    Tilley, Barbara C.
    LaPelle, Nancy R.
    Stebbins, Glenn T.
    MOVEMENT DISORDERS, 2015, 30 (12) : 1632 - 1638
  • [12] Handling missing values in Principal Component Analysis
    Josse, Julie
    Husson, Francois
    Pages, Jerome
    JOURNAL OF THE SFDS, 2009, 150 (02): : 28 - 51
  • [13] Missing values handling for machine learning portfolios
    Chen, Andrew Y.
    McCoy, Jack
    JOURNAL OF FINANCIAL ECONOMICS, 2024, 155
  • [14] Handling Missing Values with Automatic Threshold Selection
    Yin, Xuri
    ICAIE 2009: PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND EDUCATION, VOLS 1 AND 2, 2009, : 36 - 40
  • [15] Handling missing values in multiple factor analysis
    Husson, Francois
    Josse, Julie
    FOOD QUALITY AND PREFERENCE, 2013, 30 (02) : 77 - 85
  • [16] A novel clustering-based purity and distance imputation for handling medical data with missing values
    Cheng, Ching-Hsue
    Huang, Shu-Fen
    SOFT COMPUTING, 2021, 25 (17) : 11781 - 11801
  • [17] Reporting and handling missing values in clinical studies in intensive care units
    Vesin, Aurelien
    Azoulay, Elie
    Ruckly, Stephane
    Vignoud, Lucile
    Rusinova, Katerina
    Benoit, Dominique
    Soares, Marcio
    Azeivedo-Maia, Paulo
    Abroug, Fekri
    Benbenishty, Judith
    Timsit, Jean Francois
    INTENSIVE CARE MEDICINE, 2013, 39 (08) : 1396 - 1404
  • [18] Handling Missing Values in Information Systems Research: A Review of Methods and Assumptions
    Peng, Jiaxu
    Hahn, Jungpil
    Huang, Ke-Wei
    INFORMATION SYSTEMS RESEARCH, 2023, 34 (01) : 5 - 26
  • [19] Handling Missing Values in Surveys With Complex Study Design: A Simulation Study
    Kalpourtzi, Natasa
    Carpenter, James R.
    Touloumi, Giota
    JOURNAL OF SURVEY STATISTICS AND METHODOLOGY, 2024, 12 (01) : 105 - 129
  • [20] Reporting and handling missing values in clinical studies in intensive care units
    Aurélien Vesin
    Elie Azoulay
    Stéphane Ruckly
    Lucile Vignoud
    Kateřina Rusinovà
    Dominique Benoit
    Marcio Soares
    Paulo Azeivedo-Maia
    Fekri Abroug
    Judith Benbenishty
    Jean Francois Timsit
    Intensive Care Medicine, 2013, 39 : 1396 - 1404