Handling Missing Values in Local Post-hoc Explainability

被引:1
|
作者
Cinquini, Martina [1 ,2 ]
Giannotti, Fosca [2 ,3 ]
Guidotti, Riccardo [1 ,2 ]
Mattei, Andrea [1 ]
机构
[1] Univ Pisa, Pisa, Italy
[2] ISTI CNR, Pisa, Italy
[3] Scuola Normale Super Pisa, Pisa, Italy
来源
EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT II | 2023年 / 1902卷
基金
英国工程与自然科学研究理事会;
关键词
Explainable AI; Local Post-hoc Explanation; Decision-Making; Missing Values; Missing Data; Data Imputation; MULTIPLE IMPUTATION;
D O I
10.1007/978-3-031-44067-0_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Missing data are quite common in real scenarios when using Artificial Intelligence (AI) systems for decision-making with tabular data and effectively handling them poses a significant challenge for such systems. While some machine learning models used by AI systems can tackle this problem, the existing literature lacks post-hoc explainability approaches able to deal with predictors that encounter missing data. In this paper, we extend a widely used local model-agnostic post-hoc explanation approach that enables explainability in the presence of missing values by incorporating state-of-the-art imputation methods within the explanation process. Since our proposal returns explanations in the form of feature importance, the user will be aware also of the importance of a missing value in a given record for a particular prediction. Extensive experiments show the effectiveness of the proposed method with respect to some baseline solutions relying on traditional data imputation.
引用
收藏
页码:256 / 278
页数:23
相关论文
共 50 条
  • [1] Assessing Post-hoc Explainability of the BKT Algorithm
    Zhou, Tongyu
    Sheng, Haoyu
    Howley, Iris
    PROCEEDINGS OF THE 3RD AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY AIES 2020, 2020, : 407 - 413
  • [2] Select Wisely and Explain: Active Learning and Probabilistic Local Post-hoc Explainability
    Saini, Aditya
    Prasad, Ranjitha
    PROCEEDINGS OF THE 2022 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, AIES 2022, 2022, : 599 - 608
  • [3] Assessing Bias in Skin Lesion Classifiers With Contemporary Deep Learning and Post-Hoc Explainability Techniques
    Corbin, Adam
    Marques, Oge
    IEEE ACCESS, 2023, 11 : 78339 - 78352
  • [4] Fuzzy based Techniques for Handling Missing Values
    El-Bakry, Malak
    El-Kilany, Ayman
    Mazen, Sherif
    Ali, Farid
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (03) : 50 - 55
  • [5] Handling missing values in trait data
    Johnson, Thomas F.
    Isaac, Nick J. B.
    Paviolo, Agustin
    Gonzalez-Suarez, Manuela
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2021, 30 (01): : 51 - 62
  • [6] Handling Missing Values in Longitudinal Panel Data With Multiple Imputation
    Young, Rebekah
    Johnson, David R.
    JOURNAL OF MARRIAGE AND FAMILY, 2015, 77 (01) : 277 - 294
  • [7] A primer for handling missing values in the analysis of education and training data
    Gemici, Sinan
    Bednarz, Alice
    Lim, Patrick
    INTERNATIONAL JOURNAL OF TRAINING RESEARCH, 2012, 10 (03): : 233 - 250
  • [8] missMDA: A Package for Handling Missing Values in Multivariate Data Analysis
    Josse, Julie
    Husson, Francois
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 70 (01):
  • [9] Handling missing values in kernel methods with application to microbiology data
    Belanche, Lluis A.
    Kobayashi, Vladimer
    Aluja, Tomas
    NEUROCOMPUTING, 2014, 141 : 110 - 116
  • [10] Handling missing values in exploratory multivariate data analysis methods
    Josse, Julie
    Husson, Francois
    JOURNAL OF THE SFDS, 2012, 153 (02): : 79 - 99