Estimation of daily XCO2 at 1 km resolution in China using a spatiotemporal ResNet model

被引:0
作者
Wu, Chao [1 ,2 ]
Yang, Shuo [1 ]
Jiao, Donglai [1 ,2 ]
Chen, Yixiang [1 ,2 ]
Yang, Jing [1 ,2 ]
Huang, Bo [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Internet Things, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Smart Hlth Big Data Anal & Locat Serv Engn Lab Jia, Nanjing 210023, Peoples R China
[3] Univ Hong Kong, Dept Geog, Pokfulam, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
XCO2; ST-ResNet; High spatiotemporal resolution; China; CO2; EMISSIONS; OBSERVING SATELLITE; ENERGY-CONSUMPTION; URBANIZATION; SPECTROMETER; RETRIEVAL; OCO-2;
D O I
10.1016/j.scitotenv.2024.176171
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Carbon dioxide (CO2) serves as a crucial greenhouse gas that traps heat and regulates the Earth's temperature. High spatiotemporal resolution CO2 estimation can provide valuable information to understand the characteristics of fine-scale climate change trends and to formulate more effective emission reduction strategies. This study presents a spatiotemporal ResNet model (ST-ResNet) specifically developed to estimate the highest resolution (1 km x 1 km) daily column-averaged dry-air mole fraction of CO2 (XCO2) in China from 2015 to 2020. The ST-ResNet model excels in estimating XCO2 by comprehensively considering the complex relationships between XCO2 and its various influencing factors, while efficiently capturing both temporal and spatial correlations, thereby demonstrating remarkable generalization capability. The results show that the ST-ResNet generates a highly accurate XCO2 dataset, outperforming the traditional ResNet. Ground-based validation results further confirm the high accuracy and spatiotemporal resolution of our estimated data product. Using this dataset, the spatial and temporal characteristics of XCO2 across the entire China and several urban agglomerations have been analyzed. The high spatiotemporal resolution estimated XCO2 dataset for China is made publicly available at [https://doi.org/10.6084/m9.figshare.25272868], offering substantial potential for fine-scale carbon research.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Daily Estimation of Ground-Level PM2.5 Concentrations over Beijing Using 3 km Resolution MODIS AOD [J].
Xie, Yuanyu ;
Wang, Yuxuan ;
Zhang, Kai ;
Dong, Wenhao ;
Lv, Baolei ;
Bai, Yuqi .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2015, 49 (20) :12280-12288
[32]   Improving the estimation of ship emissions using the high-spatiotemporal resolution wind fields simulated by the Weather Research and Forecast model: A case study in China [J].
Fu, Xinyi ;
Chen, Dongsheng ;
Guo, Xiurui ;
Lang, Jianlei ;
Zhou, Ying .
JOURNAL OF INDUSTRIAL ECOLOGY, 2022, 26 (06) :1871-1881
[33]   Mapping CO2 spatiotemporal transfers embodied in China's trade using a global dynamic network model endogenizing fixed capital [J].
Xu, Dongxiao ;
Zhang, Yan ;
Ye, Quanliang ;
Fang, Zhuoqiong ;
Li, Yuxuan ;
Wang, Xinjing ;
Yang, Zhifeng .
JOURNAL OF CLEANER PRODUCTION, 2023, 427
[34]   Estimation of High-Resolution Daily Ground-Level PM2.5 Concentration in Beijing 2013-2017 Using 1 km MAIAC AOT Data [J].
Han, Weihong ;
Tong, Ling ;
Chen, Yunping ;
Li, Runkui ;
Yan, Beizhan ;
Liu, Xue .
APPLIED SCIENCES-BASEL, 2018, 8 (12)
[35]   Estimating 1 km gridded daily air temperature using a spatially varying coefficient model with sign preservation [J].
Zhang, Tao ;
Zhou, Yuyu ;
Wang, Li ;
Zhao, Kaiguang ;
Zhu, Zhengyuan .
REMOTE SENSING OF ENVIRONMENT, 2022, 277
[36]   A novel scheme for seamless global mapping of daily mean air temperature (SGM_DMAT) at 1-km spatial resolution using satellite and auxiliary data [J].
Huang, Ran ;
Li, Shengcheng ;
Zhu, Xin ;
Li, Jianing ;
Xiao, Yuanjun ;
Weng, Wei ;
Shao, Qi ;
Chai, Dengfeng ;
Zhang, Jingcheng ;
Zhang, Yao ;
Yang, Lingbo ;
Wu, Kaihua ;
Hu, Zhihao ;
Liu, Li ;
Sun, Weiwei ;
Liu, Weiwei ;
Huang, Jingfeng .
ECOLOGICAL INFORMATICS, 2025, 90
[37]   SIMULATION OF DAILY VARIABILITY OF SURFACE-TEMPERATURE AND PRECIPITATION OVER EUROPE IN THE CURRENT AND 2XCO(2) CLIMATES USING THE UKMO CLIMATE MODEL [J].
GREGORY, JM ;
MITCHELL, JFB .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1995, 121 (526) :1451-1476
[38]   Can a regional-scale reduction of atmospheric CO2 during the COVID-19 pandemic be detected from space? A case study for East China using satellite XCO2 retrievals [J].
Buchwitz, Michael ;
Reuter, Maximilian ;
Noel, Stefan ;
Bramstedt, Klaus ;
Schneising, Oliver ;
Hilker, Michael ;
Andrade, Blanca Fuentes ;
Bovensmann, Heinrich ;
Burrows, John P. ;
Di Noia, Antonio ;
Boesch, Hartmut ;
Wu, Lianghai ;
Landgraf, Jochen ;
Aben, Ilse ;
Retscher, Christian ;
O'Dell, Christopher W. ;
Crisp, David .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2021, 14 (03) :2141-2166
[39]   High resolution CO2 emissions inventory and investigation of driving factors for China using an advanced dynamic estimation model [J].
Hou, Xiaosong ;
Wang, Xiaoqi ;
Cheng, Shuiyuan ;
Wang, Chuanda ;
Wang, Wei .
RESOURCES CONSERVATION AND RECYCLING, 2025, 215
[40]   A National-Scale 1-km Resolution PM2.5 Estimation Model over Japan Using MAIAC AOD and a Two-Stage Random Forest Model [J].
Jung, Chau-Ren ;
Chen, Wei-Ting ;
Nakayama, Shoji F. .
REMOTE SENSING, 2021, 13 (18)