Multi-objective arithmetic optimization algorithm with random searching strategies to solve combined economic emission dispatch problem

被引:0
|
作者
Hao, Wen-Kuo [1 ]
Wang, Jie-Sheng [1 ]
Li, Xu-Dong [1 ]
Liu, Yu [1 ]
Zhu, Jun-Hua [1 ]
Zhang, Min [1 ]
Wang, Min [1 ]
机构
[1] Univ Sci & Technol Liaoning, Sch Elect & Informat Engn, Anshan 114044, Peoples R China
关键词
Multi-objective optimization; Combined economic emission dispatch; Random search strategy; Arithmetic optimization algorithm; PARTICLE SWARM OPTIMIZATION; LOAD DISPATCH; POWER DISPATCH; EVOLUTIONARY ALGORITHMS;
D O I
10.1016/j.cie.2024.110434
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Given the escalating environmental problems, the significance of combined economic emission dispatch (CEED) in electricity generation is progressively growing. To solve the CEED problem more effectively and achieve reduced fuel costs and pollutant emissions, a multi-objective arithmetic optimization algorithm (AOA) with random searching strategies was proposed. The math optimizer probability (MOP) is a parameter that governs the individual position update of the AOA algorithm. The proposed algorithm uses four random search strategies, namely tangent flight, Levy flight, Brownian motion and lognormal flight, to replace the MOP parameter in AOA. This modification significantly enhances the algorithm's global search capability. The math optimizer accelerated (MOA) function is a crucial parameter for controlling the search mode selection in AOA. By incorporating hyperbolic tangent fluctuation into the variation trend of MOA, the exploration ability of the algorithm is enhanced. To achieve the Pareto optimal solution with extensive coverage, the non-dominated solutions are initially stored in a repository. Subsequently, the roulette mechanism is employed to select a leader from the repository for position update. Ultimately, this process yields a set of Pareto optimal solutions with relatively uniform distribution. The effectiveness of the proposed algorithm is verified through simulation experiments with 20 multi-objective benchmark functions, and the optimal improved strategy is selected among four improvement methods. It is also the best in comparison with other multi-objective algorithms. Subsequently, simulation experiments are conducted by using three CEED cases with varying sizes (6 units 1200 MW, 10 units 2000 MW and 40 units 10500 MW), wherein the objectives of fuel cost and pollutant emission are compared with methodologies employed in existing literature. The results show that the proposed algorithm is superior to other algorithms in solving CEED problems, and can get smaller fuel cost and pollutant emission, and can obtain more evenly distributed Pareto optimal solution set.
引用
收藏
页数:28
相关论文
共 50 条
  • [41] A multi-objective optimization for power economic dispatch
    Chiang, Chao-Lung
    Chai, Chang-Wei
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 1587 - +
  • [42] Using Multi-objective Evolutionary Algorithm to Solve Dynamic Environment and Economic Dispatch with EVs
    Qu, Boyang
    Qiao, Baihao
    Zhu, Yongsheng
    Jiao, Yuechao
    Xiao, Junming
    Wang, Xiaolei
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2017, PT II, 2017, 10386 : 31 - 39
  • [43] Multi-objective squirrel search algorithm to solve economic environmental power dispatch problems
    V. Ponnuvel, Sakthivel
    Murugesan, Suman
    P. Duraisamy, Sathya
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2020, 30 (12)
  • [44] New Approach to Solve Multi-objective Environmental / Economic Dispatch
    Guesmi, Tawfik
    Abdallah, Hsan Hadj
    Toumi, Ahmed
    JOURNAL OF ELECTRICAL SYSTEMS, 2006, 2 (02) : 64 - 81
  • [45] Application of a multi-objective genetic algorithm to solve reliability optimization problem
    Kishor, Amar
    Yadav, Shiv Prasad
    Kumar, Surendra
    ICCIMA 2007: INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND MULTIMEDIA APPLICATIONS, VOL I, PROCEEDINGS, 2007, : 458 - +
  • [46] Multi-objective optimization for combined heat and power economic dispatch with power transmission loss and emission reduction
    Shi, Bin
    Yan, Lie-Xiang
    Wu, Wei
    ENERGY, 2013, 56 : 135 - 143
  • [47] Chaotic Butterfly Optimization Algorithm Applied to Multi-objective Economic and Emission Dispatch in Modern Power System
    Sahoo A.K.
    Panigrahi T.K.
    Das S.R.
    Behera A.
    Recent Advances in Computer Science and Communications, 2022, 15 (02): : 170 - 185
  • [48] MULTI-OBJECTIVE ECONOMIC AND EMISSION DISPATCH USING SYMBIOTIC ORGANISMS SEARCH ALGORITHM
    Alomoush, Muwaffaq I.
    Alheyasat, Abdel Rahman N.
    INTERNATIONAL JOURNAL OF POWER AND ENERGY SYSTEMS, 2018, 38 (01): : 13 - 24
  • [49] A multi-objective hybrid evolutionary algorithm for dynamic economic emission load dispatch
    Roy, Provas Kumar
    Bhui, Sudipta
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2016, 26 (01): : 49 - 78
  • [50] Multi-Objective Optimal Economic Emission Power Dispatch using Bat Algorithm
    Kumar, G. Ravi
    Rohit, Allaparthi
    Priyanka, G.
    Vamsipriya, G.
    2017 INNOVATIONS IN POWER AND ADVANCED COMPUTING TECHNOLOGIES (I-PACT), 2017,