SPECTRAL ANALYSIS AND EXPONENTIAL STABILITY OF A MOORE-GIBSON-THOMPSON EQUATION

被引:0
作者
Bezerra, Flank [1 ]
Santos, Lucas [2 ]
Silva, Maria [1 ]
takaessu Jr, Carlos [3 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, PB, Brazil
[2] Inst Fed Paraiba, BR-58051900 Joao Pessoa, PB, Brazil
[3] Univ Sao Paulo, ICMC, Ave Trabalhador Sao Carlense, BR-13566590 Sao Carlos, SP, Brazil
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2024年
基金
巴西圣保罗研究基金会;
关键词
Analytic semigroup; characteristic polynomial; fractional power linear problem; Moore-Gibson-Thompson equation; strongly continuous semigroup; 3RD-ORDER;
D O I
10.3934/dcdsb.2024098
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a class of abstract third-order linear evolution equations in time which can be seen as a generalized fractional MooreGibson-Thompson (MGT) equation. Given the classic MGT model, we prove the well-posedness and exponential stability of our model in a suitable phase space.
引用
收藏
页数:13
相关论文
共 18 条
  • [1] Thermomagnetic behavior of a semiconductor material heated by pulsed excitation based on the fourth-order MGT photothermal model
    Abouelregal, Ahmed E.
    Sedighi, Hamid M.
    Eremeyev, Victor A.
    [J]. CONTINUUM MECHANICS AND THERMODYNAMICS, 2023, 35 (01) : 81 - 102
  • [2] Amann H., 1995, Monographs in Mathematics, V89
  • [3] Parabolic approximation of damped wave equations via fractional powers: Fast growing nonlinearities and continuity of the dynamics
    Bezerra, F. D. M.
    Carvalho, A. N.
    Cholewa, J. W.
    Nascimento, M. J. D.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (01) : 377 - 405
  • [4] Fractional powers approach of operators for abstract evolution equations of third order in time
    Bezerra, Flank D. M.
    Santos, Lucas A.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (07) : 5661 - 5679
  • [5] Global attractors for a third order in time nonlinear dynamics
    Caixeta, Arthur H.
    Lasiecka, Irena
    Cavalcanti, Valria N. D.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (01) : 113 - 147
  • [6] Datko R., 1970, Journal of Mathematical Analysis and Applications, V32, P610, DOI 10.1016/0022-247X(70)90283-0
  • [7] ON THE REGULARIZED MOORE-GIBSON-THOMPSON EQUATION
    Dell'oro, Filippo
    Liverani, Lorenzo
    Pata, Vittorino
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2023, 16 (09): : 2326 - 2338
  • [8] On a Fourth-Order Equation of Moore-Gibson-Thompson Type
    Dell'Oro, Filippo
    Pata, Vittorino
    [J]. MILAN JOURNAL OF MATHEMATICS, 2017, 85 (02) : 215 - 234
  • [9] Henry D., 1981, LECT NOTES MATH, V840
  • [10] Kaltenbacher Barbara, 2011, Control and Cybernetics, V40, P971