Translating Natural Language Queries to SQL Using the T5 Model

被引:0
|
作者
Wong, Albert [1 ]
Pham, Lien [1 ]
Lee, Young [2 ]
Chan, Shek [1 ]
Sadaya, Razel [1 ]
Khmelevsky, Youry [3 ]
Clement, Mathias [3 ]
Cheng, Florence Wing Yau [1 ]
Mahony, Joe [4 ]
Ferri, Michael [4 ]
机构
[1] Langara Coll, Math & Stat, Vancouver, BC, Canada
[2] Okanagan Coll, Math & Stat, Kelowna, BC, Canada
[3] Okanagan Coll, Comp Sci, Kelowna, BC, Canada
[4] Harris SmartWorks, Res & Dev, Ottawa, ON, Canada
来源
18TH ANNUAL IEEE INTERNATIONAL SYSTEMS CONFERENCE, SYSCON 2024 | 2024年
基金
加拿大自然科学与工程研究理事会;
关键词
Natural Language Processing; Data Query System; Text-to-SQL; Speech-to-SQL; Deep Learning; Machine Learning; T5; Model; Human-Machine-Systems; Energy Systems;
D O I
10.1109/SysCon61195.2024.10553509
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents the development process of a natural language to SQL model using the T5 model as the basis. The models, developed in August 2022 for an online transaction processing system and a data warehouse, have a 73% and 84% exact match accuracy respectively. These models, in conjunction with other work completed in the research project, were implemented for several companies and used successfully on a daily basis. The approach used in the model development could be implemented in a similar fashion for other database environments and with a more powerful pre-trained language model.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] ENHANCING NATURAL LANGUAGE PROCESSING USING WALRUS OPTIMIZER WITH SELF-ATTENTION DEEP LEARNING MODEL IN APPLIED LINGUISTICS
    Hassan, Abdulkhaleq Q. A.
    Alshammari, Alya
    Zaqaibeh, Belal
    Alzaidi, Muhammad Swaileh a.
    Allafi, Randa
    Alazwari, Sana
    Aljabri, Jawhara
    Nouri, Amal M.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024,
  • [42] Leveraging well-formedness and cognitive level classifiers for automatic question generation on Java technical passages using T5 transformer
    Mulla N.
    Gharpure P.
    International Journal of Information Technology, 2023, 15 (4) : 1961 - 1973
  • [43] Finding and understanding pedal misapplication crashes using a deep learning natural language model
    Bareiss, Max
    Smith, Colin
    Gabler, Hampton C.
    TRAFFIC INJURY PREVENTION, 2021, 22 : S169 - S172
  • [44] kNarrator: A Model For Authors To Simplify Authoring Process Using Natural Language Processing To Portuguese
    Kerber, Adriano
    Camozzato, Daniel
    Queiroz, Rossana
    Cassol, Vinicius
    2017 16TH BRAZILIAN SYMPOSIUM ON COMPUTER GAMES AND DIGITAL ENTERTAINMENT (SBGAMES), 2017, : 126 - 133
  • [45] Production without rules: Using an instance memory model to exploit structure in natural language
    Johns, Brendan T.
    Jamieson, Randall K.
    Crump, Matthew J. C.
    Jones, Michael N.
    Mewhort, D. J. K.
    JOURNAL OF MEMORY AND LANGUAGE, 2020, 115
  • [46] MULTI-CLASS AUTOMATED SPEECH LANGUAGE RECOGNITION USING NATURAL LANGUAGE PROCESSING WITH OPTIMAL DEEP LEARNING MODEL
    Al-anazi, Reema g.
    Alqahtani, Hamed
    Alzaidi, Muhammad swaileh a.
    Alanazi, Meshari h.
    AL Sultan, Hanan
    Alrowaily, Amal f.
    Aljabri, Jawhara
    Alqudah, Assal
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2025,
  • [47] Depression Detection from Social Media Text Analysis using Natural Language Processing Techniques and Hybrid Deep Learning Model
    Tejaswini, Vankayala
    Babu, Korra Sathya
    Sahoo, Bibhudatta
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2024, 23 (01)
  • [48] Extracting Multiple Worries From Breast Cancer Patient Blogs Using Multilabel Classification With the Natural Language Processing Model Bidirectional Encoder Representations From Transformers: Infodemiology Study of Blogs
    Watanabe, Tomomi
    Yada, Shuntaro
    Aramaki, Eiji
    Yajima, Hiroshi
    Kizaki, Hayato
    Hori, Satoko
    JMIR CANCER, 2022, 8 (02):
  • [49] Prediction model for major bleeding in anticoagulated patients with cancer-associated venous thromboembolism using machine learning and natural language processing
    Martin, Andres J. Munoz
    Lecumberri, Ramon
    Souto, Juan Carlos
    Obispo, Berta
    Sanchez, Antonio
    Aparicio, Jorge
    Aguayo, Cristina
    Gutierrez, David
    Palomo, Andres Garcia
    Benavent, Diego
    Taberna, Miren
    Vinuela-Beneitez, Maria Carmen
    Arumi, Daniel
    Hernandez-Presa, Miguel angel
    CLINICAL & TRANSLATIONAL ONCOLOGY, 2024, : 1816 - 1825
  • [50] Natural language processing analysis applied to COVID-19 open-text opinions using a distilBERT model for sentiment categorization
    Jojoa, Mario
    Eftekhar, Parvin
    Nowrouzi-Kia, Behdin
    Garcia-Zapirain, Begonya
    AI & SOCIETY, 2024, 39 (03) : 883 - 890