Advances in the application of non-contact temperature measurement technology for aero-engine blade

被引:4
作者
Cui, Ying [1 ]
Qiu, Kongxin [1 ]
Gao, Shan [1 ]
Chen, Liwei [1 ]
Jiang, Jing [2 ]
Niu, Yi [2 ]
Wang, Chao [3 ]
机构
[1] Harbin Engn Univ, Sch Informat & Commun Engn, Key Lab Adv Marine Commun & Informat Technol, Minist Ind & Informat Technol, Harbin 150001, Peoples R China
[2] Univ Elect Sci & Technol China, Clean Energy Mat & Engn Ctr, Sch Elect Sci & Engn, State Key Lab Elect Thin Film & Integrated Devices, Chengdu 611731, Peoples R China
[3] Tsinghua Univ, Dept Precis Instrument, State Key Lab Precis Measurement Technol & Instrum, Beijing 100084, Peoples R China
关键词
FIBER BRAGG GRATINGS; TURBINE BLADE; THERMOGRAPHIC PHOSPHOR; RADIATION THERMOMETRY; CRYSTAL; SENSORS; WAVELENGTH; PROGRESS;
D O I
10.1063/5.0215538
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The advancement of the aviation sector has made the temperature measurement technology for aero-engine turbine blades essential for maintaining the engine's safe and steady performance. The non-contact temperature measurement technology is a trending research focus in turbine blade temperature measurement due to its benefits of not requiring direct touch with the object being measured and its suitability for high-temperature and high-speed conditions. This paper provides a concise overview of various key non-contact temperature measurement methods for aero-engines, such as fluorescence temperature measurement, fiber-optic temperature measurement, and radiation temperature measurement. It discusses the temperature measurement principle, technical characteristics, and the current research status both domestically and internationally. Based on this, this Review further discusses the main challenges faced by the non-contact temperature measurement technology and the development trend of the future.
引用
收藏
页数:10
相关论文
共 107 条
[1]   Luminescence of YAG:Dy and YAG:Dy,Er crystals to 1700 °C [J].
Allison, S. W. ;
Beshears, D. L. ;
Cates, M. R. ;
Scudiere, M. B. ;
Shaw, D. W. ;
Ellis, A. D. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (04)
[2]  
Anderson B. R., 2017, P FRONT OPT
[3]  
[Anonymous], 2001, Wiley series in measurement science and technology
[4]   Spotlight on Luminescence Thermometry: Basics, Challenges, and Cutting-Edge Applications [J].
Brites, Carlos D. S. ;
Marin, Riccardo ;
Suta, Markus ;
Carneiro Neto, Albano N. ;
Ximendes, Erving ;
Jaque, Daniel ;
Carlos, Luis D. .
ADVANCED MATERIALS, 2023, 35 (36)
[5]   Lanthanide-Based Thermometers: At the Cutting-Edge of Luminescence Thermometry [J].
Brites, Carlos D. S. ;
Balabhadra, Sangeetha ;
Carlos, Luis D. .
ADVANCED OPTICAL MATERIALS, 2019, 7 (05)
[6]  
Chen H. W., 2022, Metrol. Meas. Technol, V42, P53, DOI [10.11823/j.issn.1674-5795.2022.06.08, DOI 10.11823/J.ISSN.1674-5795.2022.06.08]
[7]   High-temperature thermographic phosphor mixture YAP/YAG:Dy3+ and its photoluminescence properties [J].
Chepyga, Liudmyla M. ;
Osvet, Andres ;
Brabec, Christoph J. ;
Batentschuk, Miroslaw .
JOURNAL OF LUMINESCENCE, 2017, 188 :582-588
[8]   Photoluminescence properties of thermographic phosphors YAG:Dy and YAG:Dy, Er doped with boron and nitrogen [J].
Chepyga, Liudmyla M. ;
Jovicic, Gordana ;
Vetter, Andreas ;
Osvet, Andres ;
Brabec, Christoph J. ;
Batentschuk, Miroslaw .
APPLIED PHYSICS B-LASERS AND OPTICS, 2016, 122 (08)
[9]  
Chi F., 2009, Appl. Sci. Technol, V36, P33, DOI [10.3969/j.issn.1009-671X.2009.07.009, DOI 10.3969/J.ISSN.1009-671X.2009.07.009]
[10]  
Chi F., 2013, Appl. Sci. Technol, V40, P45, DOI [10.3969/j.issn.1009-671X.201211030, DOI 10.3969/J.ISSN.1009-671X.201211030]