Methods for Parameter Estimation in Wine Fermentation Models

被引:0
作者
Coleman, Robert [1 ,2 ]
Nelson, James [1 ]
Boulton, Roger [1 ]
机构
[1] Univ Calif Davis, Dept Viticulture & Enol, Davis, CA 95616 USA
[2] Washington State Univ, Dept Viticulture & Enol, Richland, WA 99164 USA
来源
FERMENTATION-BASEL | 2024年 / 10卷 / 08期
关键词
modeling; kinetics; parameter estimation; optimization; integration; computational methods;
D O I
10.3390/fermentation10080386
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The estimation of parameters in a wine fermentation model provides the opportunity to predict the rate and concentration outcomes, to strategically intervene to change the conditions, and to forecast the rates of heat and carbon dioxide release. The chosen parameters of the fermentation model are the initial assimilable nitrogen concentration and yeast properties (lag time, viability constant, and specific maintenance rate). This work evaluates six methods for parameter estimation: Bard, Bayesian Optimization, Particle Swarm Optimization, Differential Evolution, Genetic Evolution, and a modified Direct Grid Search technique. The benefits and drawbacks of the parameter computational methods are discussed, as well as a comparison of numerical integration methods (Euler, Runge-Kutta, backward differential formula (BDF), and Adams/BDF). A test set of density-time data for five white and five red commercial wine fermentations across vintage, grape cultivar, fermentation temperature, inoculated yeast strain, and fermentor size was used to evaluate the parameter estimation methods. A Canonical Variate Analysis shows that the estimation methods are not significantly different from each other while, in the parameter space, each of the fermentations were significantly different from each other.
引用
收藏
页数:11
相关论文
共 30 条
  • [1] PyMC: a modern, and comprehensive probabilistic programming framework in Python']Python
    Abril-Pla, Oriol
    Andreani, Virgile
    Carroll, Colin
    Dong, Larry
    Fonnesbeck, Christopher J.
    Kochurov, Maxim
    Kumar, Ravin
    Lao, Junpeng
    Luhmann, Christian C.
    Martin, Osvaldo A.
    Osthege, Michael
    Vieira, Ricardo
    Wiecki, Thomas
    Zinkov, Robert
    [J]. PEERJ COMPUTER SCIENCE, 2023, 9
  • [2] Aiba S., 1973, BIOCH ENG
  • [3] Artificial Neural Networks and Gompertz Functions for Modelling and Prediction of Solvents Produced by the S. cerevisiae Safale S04 Yeast
    Almeida, Vinicio Moya
    Iglesias, Belen Diezma
    Hernando, Eva Cristina Correa
    [J]. FERMENTATION-BASEL, 2021, 7 (04):
  • [4] awri, AWRI Fermentation Simulator
  • [5] Bailey J.E., 1977, BIOCH ENG FUNDAMENTA
  • [7] Bard Y., 1974, Nonlinear Parameter Estimation, P269
  • [8] Bisson LF, 2000, AM J ENOL VITICULT, V51, P168
  • [9] BOULTON R, 1980, AM J ENOL VITICULT, V31, P40
  • [10] Boulton R.B., 1999, PRINCIPLES PRACTICES, P521, DOI DOI 10.1007/978-1-4757-6255-6