Grounded Persistent Path Homology: A Stable, Topological Descriptor for Weighted Digraphs

被引:0
|
作者
Chaplin, Thomas [1 ]
Harrington, Heather A. [1 ,2 ,3 ,4 ]
Tillmann, Ulrike [1 ,5 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] Max Planck Inst Mol Cell Biol & Genet, Dresden, Germany
[3] Ctr Syst Biol Dresden, Dresden, Germany
[4] Tech Univ Dresden, Fac Math, Dresden, Germany
[5] Univ Cambridge, Isaac Newton Inst, Cambridge, England
基金
英国工程与自然科学研究理事会;
关键词
Weighted directed graphs; Topological data analysis; Persistent homology; Path homology; STABILITY;
D O I
10.1007/s10208-024-09679-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Weighted digraphs are used to model a variety of natural systems and can exhibit interesting structure across a range of scales. In order to understand and compare these systems, we require stable, interpretable, multiscale descriptors. To this end, we propose grounded persistent path homology (GrPPH)-a new, functorial, topological descriptor that describes the structure of an edge-weighted digraph via a persistence barcode. We show there is a choice of circuit basis for the graph which yields geometrically interpretable representatives for the features in the barcode. Moreover, we show the barcode is stable, in bottleneck distance, to both numerical and structural perturbations.
引用
收藏
页数:66
相关论文
共 50 条
  • [41] Topological analysis of tapped granular media using persistent homology
    Ardanza-Trevijano, S.
    Zuriguel, Iker
    Arevalo, Roberto
    Maza, Diego
    PHYSICAL REVIEW E, 2014, 89 (05):
  • [42] Topological measurement of deep neural networks using persistent homology
    Watanabe, Satoru
    Yamana, Hayato
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2022, 90 (01) : 75 - 92
  • [44] An Efficient Algorithm for 1-Dimensional (Persistent) Path Homology
    Dey, Tamal K.
    Li, Tianqi
    Wang, Yusu
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (04) : 1102 - 1132
  • [45] Predicting thermodynamic properties with a novel semiempirical topological descriptor and path numbers
    Zhou, Congyi
    Chu, Xi
    Nie, Changming
    JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (34): : 10174 - 10179
  • [46] An Efficient Algorithm for 1-Dimensional (Persistent) Path Homology
    Tamal K. Dey
    Tianqi Li
    Yusu Wang
    Discrete & Computational Geometry, 2022, 68 : 1102 - 1132
  • [47] Persistent homology-based descriptor for machine-learning potential of amorphous structures
    Minamitani, Emi
    Obayashi, Ippei
    Shimizu, Koji
    Watanabe, Satoshi
    JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (08):
  • [48] Robust Reconstruction of Closed Parametric Curves by Topological Understanding with Persistent Homology
    He, Yaqi
    Yan, Jiacong
    Lin, Hongwei
    COMPUTER-AIDED DESIGN, 2023, 165
  • [49] Method for persistent topological features extraction of schizophrenia patients' electroencephalography signal based on persistent homology
    Guo, Guangxing
    Zhao, Yanli
    Liu, Chenxu
    Fu, Yongcan
    Xi, Xinhua
    Jin, Lizhong
    Shi, Dongli
    Wang, Lin
    Duan, Yonghong
    Huang, Jie
    Tan, Shuping
    Yin, Guimei
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2022, 16
  • [50] Exact Topological Inference for Paired Brain Networks via Persistent Homology
    Chung, Moo K.
    Villalta-Gil, Victoria
    Lee, Hyekyoung
    Rathouz, Paul J.
    Lahey, Benjamin B.
    Zald, David H.
    INFORMATION PROCESSING IN MEDICAL IMAGING (IPMI 2017), 2017, 10265 : 299 - 310