Grounded Persistent Path Homology: A Stable, Topological Descriptor for Weighted Digraphs

被引:0
|
作者
Chaplin, Thomas [1 ]
Harrington, Heather A. [1 ,2 ,3 ,4 ]
Tillmann, Ulrike [1 ,5 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] Max Planck Inst Mol Cell Biol & Genet, Dresden, Germany
[3] Ctr Syst Biol Dresden, Dresden, Germany
[4] Tech Univ Dresden, Fac Math, Dresden, Germany
[5] Univ Cambridge, Isaac Newton Inst, Cambridge, England
基金
英国工程与自然科学研究理事会;
关键词
Weighted directed graphs; Topological data analysis; Persistent homology; Path homology; STABILITY;
D O I
10.1007/s10208-024-09679-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Weighted digraphs are used to model a variety of natural systems and can exhibit interesting structure across a range of scales. In order to understand and compare these systems, we require stable, interpretable, multiscale descriptors. To this end, we propose grounded persistent path homology (GrPPH)-a new, functorial, topological descriptor that describes the structure of an edge-weighted digraph via a persistence barcode. We show there is a choice of circuit basis for the graph which yields geometrically interpretable representatives for the features in the barcode. Moreover, we show the barcode is stable, in bottleneck distance, to both numerical and structural perturbations.
引用
收藏
页数:66
相关论文
共 50 条
  • [31] STABLE K-THEORY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY
    DUNDAS, BI
    MCCARTHY, R
    ANNALS OF MATHEMATICS, 1994, 140 (03) : 685 - 701
  • [32] Stable distance of persistent homology for dynamic graph comparison
    Ye, Dongsheng
    Jiang, Hao
    Jiang, Ying
    Li, Hao
    KNOWLEDGE-BASED SYSTEMS, 2023, 278
  • [34] Topological measurement of deep neural networks using persistent homology
    Satoru Watanabe
    Hayato Yamana
    Annals of Mathematics and Artificial Intelligence, 2022, 90 : 75 - 92
  • [35] On Topological Data Analysis for Structural Dynamics: An Introduction to Persistent Homology
    Gowdridge, T.
    Dervilis, N.
    Worden, K.
    ASME Open Journal of Engineering, 2022, 1 (01):
  • [36] Stable Comparison of Multidimensional Persistent Homology Groups with Torsion
    Patrizio Frosini
    Acta Applicandae Mathematicae, 2013, 124 : 43 - 54
  • [38] Betti numbers in multidimensional persistent homology are stable functions
    Cerri, Andrea
    Di Fabio, Barbara
    Ferri, Massimo
    Frosini, Patrizio
    Landi, Claudia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (12) : 1543 - 1557
  • [39] Persistence Images: A Stable Vector Representation of Persistent Homology
    Adams, Henry
    Emerson, Tegan
    Kirby, Michael
    Neville, Rachel
    Peterson, Chris
    Shipman, Patrick
    Chepushtanova, Sofya
    Hanson, Eric
    Motta, Francis
    Ziegelmeier, Lori
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18
  • [40] Topological trajectory classification with filtrations of simplicial complexes and persistent homology
    Pokorny, Florian T.
    Hawasly, Majd
    Ramamoorthy, Subramanian
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2016, 35 (1-3): : 204 - 223