Grounded Persistent Path Homology: A Stable, Topological Descriptor for Weighted Digraphs

被引:0
|
作者
Chaplin, Thomas [1 ]
Harrington, Heather A. [1 ,2 ,3 ,4 ]
Tillmann, Ulrike [1 ,5 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] Max Planck Inst Mol Cell Biol & Genet, Dresden, Germany
[3] Ctr Syst Biol Dresden, Dresden, Germany
[4] Tech Univ Dresden, Fac Math, Dresden, Germany
[5] Univ Cambridge, Isaac Newton Inst, Cambridge, England
基金
英国工程与自然科学研究理事会;
关键词
Weighted directed graphs; Topological data analysis; Persistent homology; Path homology; STABILITY;
D O I
10.1007/s10208-024-09679-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Weighted digraphs are used to model a variety of natural systems and can exhibit interesting structure across a range of scales. In order to understand and compare these systems, we require stable, interpretable, multiscale descriptors. To this end, we propose grounded persistent path homology (GrPPH)-a new, functorial, topological descriptor that describes the structure of an edge-weighted digraph via a persistence barcode. We show there is a choice of circuit basis for the graph which yields geometrically interpretable representatives for the features in the barcode. Moreover, we show the barcode is stable, in bottleneck distance, to both numerical and structural perturbations.
引用
收藏
页数:66
相关论文
共 50 条
  • [21] EXPLORING PERSISTENT LOCAL HOMOLOGY IN TOPOLOGICAL DATA ANALYSIS
    Fasy, Brittany Terese
    Wang, Bei
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 6430 - 6434
  • [22] Topological Regularization for Representation Learning via Persistent Homology
    Chen, Muyi
    Wang, Daling
    Feng, Shi
    Zhang, Yifei
    MATHEMATICS, 2023, 11 (04)
  • [23] Topological analysis of traffic pace via persistent homology*
    Carmody, Daniel R.
    Sowers, Richard B.
    JOURNAL OF PHYSICS-COMPLEXITY, 2021, 2 (02):
  • [24] Topological Fidelity and Image Thresholding: A Persistent Homology Approach
    Yu-Min Chung
    Sarah Day
    Journal of Mathematical Imaging and Vision, 2018, 60 : 1167 - 1179
  • [25] Topological Fidelity and Image Thresholding: A Persistent Homology Approach
    Chung, Yu-Min
    Day, Sarah
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2018, 60 (07) : 1167 - 1179
  • [26] Topological trajectory classification with filtrations of simplicial complexes and persistent homology
    Pokorny, Florian T.
    Hawasly, Majd
    Ramamoorthy, Subramanian
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2016, 35 (1-3) : 204 - 223
  • [28] Topological Data Analysis as a Morphometric Method: Using Persistent Homology to Demarcate a Leaf Morphospace
    Li, Mao
    An, Hong
    Angelovici, Ruthie
    Bagaza, Clement
    Batushansky, Albert
    Clark, Lynn
    Coneva, Viktoriya
    Donoghue, Michael J.
    Edwards, Erika
    Fajardo, Diego
    Fang, Hui
    Frank, Margaret H.
    Gallaher, Timothy
    Gebken, Sarah
    Hill, Theresa
    Jansky, Shelley
    Kaur, Baljinder
    Klahs, Phillip C.
    Klein, Laura L.
    Kuraparthy, Vasu
    Londo, Jason
    Migicovsky, Zoe
    Miller, Allison
    Mohn, Rebekah
    Myles, Sean
    Otoni, Wagner C.
    Pires, J. C.
    Rieffer, Edmond
    Schmerler, Sam
    Spriggs, Elizabeth
    Topp, Christopher N.
    Van Deynze, Allen
    Zhang, Kuang
    Zhu, Linglong
    Zink, Braden M.
    Chitwood, Daniel H.
    FRONTIERS IN PLANT SCIENCE, 2018, 9
  • [29] A Method Deciding Topological Relationship for Self-Organizing Maps by Persistent Homology Analysis
    Futagami, Rentaro
    Shibuya, Takeshi
    2016 55TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2016, : 1064 - 1069
  • [30] An Efficient Algorithm for 1-Dimensional (Persistent) Path Homology
    Dey, Tamal K.
    Li, Tianqi
    Wang, Yusu
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (04) : 1102 - 1132