Grounded Persistent Path Homology: A Stable, Topological Descriptor for Weighted Digraphs

被引:0
|
作者
Chaplin, Thomas [1 ]
Harrington, Heather A. [1 ,2 ,3 ,4 ]
Tillmann, Ulrike [1 ,5 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] Max Planck Inst Mol Cell Biol & Genet, Dresden, Germany
[3] Ctr Syst Biol Dresden, Dresden, Germany
[4] Tech Univ Dresden, Fac Math, Dresden, Germany
[5] Univ Cambridge, Isaac Newton Inst, Cambridge, England
基金
英国工程与自然科学研究理事会;
关键词
Weighted directed graphs; Topological data analysis; Persistent homology; Path homology; STABILITY;
D O I
10.1007/s10208-024-09679-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Weighted digraphs are used to model a variety of natural systems and can exhibit interesting structure across a range of scales. In order to understand and compare these systems, we require stable, interpretable, multiscale descriptors. To this end, we propose grounded persistent path homology (GrPPH)-a new, functorial, topological descriptor that describes the structure of an edge-weighted digraph via a persistence barcode. We show there is a choice of circuit basis for the graph which yields geometrically interpretable representatives for the features in the barcode. Moreover, we show the barcode is stable, in bottleneck distance, to both numerical and structural perturbations.
引用
收藏
页数:66
相关论文
共 50 条
  • [1] On the path homology of Cayley digraphs and covering digraphs
    Di, Shaobo
    Ivanov, Sergei O.
    Mukoseev, Lev
    Zhang, Mengmeng
    JOURNAL OF ALGEBRA, 2024, 653 : 156 - 199
  • [2] Cofibration category of digraphs for path homology
    Carranza, Daniel
    Doherty, Brandon
    Kapulkin, Krzyzstof
    Opie, Morgan
    Sarazola, Maru
    Wong, Liang Ze
    ALGEBRAIC COMBINATORICS, 2024, 7 (02):
  • [3] WEIGHTED PERSISTENT HOMOLOGY
    Ren, Shiquan
    Wu, Chengyuan
    Wu, Jie
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (08) : 2661 - 2687
  • [4] STABLE TOPOLOGICAL CYCLIC HOMOLOGY IS TOPOLOGICAL HOCHSCHILD HOMOLOGY
    HESSELHOLT, L
    ASTERISQUE, 1994, (226) : 175 - 192
  • [5] Hochschild homology, and a persistent approach via connectivity digraphs
    Caputi L.
    Riihimäki H.
    Journal of Applied and Computational Topology, 2024, 8 (5) : 1121 - 1170
  • [6] Stable volumes for persistent homology
    Obayashi I.
    Journal of Applied and Computational Topology, 2023, 7 (4) : 671 - 706
  • [7] Computational Tools in Weighted Persistent Homology
    Ren, Shiquan
    Wu, Chengyuan
    Wu, Jie
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2021, 42 (02) : 237 - 258
  • [8] Computational Tools in Weighted Persistent Homology
    Shiquan REN
    Chengyuan WU
    Jie WU
    Chinese Annals of Mathematics,Series B, 2021, (02) : 237 - 258
  • [9] Persistent Path Homology of Directed Networks
    Chowdhury, Samir
    Memoli, Facundo
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1152 - 1169
  • [10] ON THE PATH HOMOLOGY THEORY OF DIGRAPHS AND EILENBERG-STEENROD AXIOMS
    Grigoryan, Alexander
    Jimenez, Rolando
    Muranov, Yuri
    Yau, Shing-Tung
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2018, 20 (02) : 179 - 205