Weighted digraphs are used to model a variety of natural systems and can exhibit interesting structure across a range of scales. In order to understand and compare these systems, we require stable, interpretable, multiscale descriptors. To this end, we propose grounded persistent path homology (GrPPH)-a new, functorial, topological descriptor that describes the structure of an edge-weighted digraph via a persistence barcode. We show there is a choice of circuit basis for the graph which yields geometrically interpretable representatives for the features in the barcode. Moreover, we show the barcode is stable, in bottleneck distance, to both numerical and structural perturbations.
机构:
Johns Hopkins Univ, Dept Math, 3400 N Charles St, Baltimore, MD 21218 USAJohns Hopkins Univ, Dept Math, 3400 N Charles St, Baltimore, MD 21218 USA
Carranza, Daniel
Doherty, Brandon
论文数: 0引用数: 0
h-index: 0
机构:
Florida State Univ, Dept Math, 208 Love Bldg,1017 Acad Way, Tallahassee, FL 32306 USAJohns Hopkins Univ, Dept Math, 3400 N Charles St, Baltimore, MD 21218 USA
Doherty, Brandon
Kapulkin, Krzyzstof
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Ontario, Dept Math, 1151 Richmond St, London, ON N6A 5B7, CanadaJohns Hopkins Univ, Dept Math, 3400 N Charles St, Baltimore, MD 21218 USA
Kapulkin, Krzyzstof
Opie, Morgan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USAJohns Hopkins Univ, Dept Math, 3400 N Charles St, Baltimore, MD 21218 USA
Opie, Morgan
Sarazola, Maru
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Sch Math, 206 Church St SE, Minneapolis, MN 55455 USAJohns Hopkins Univ, Dept Math, 3400 N Charles St, Baltimore, MD 21218 USA
Sarazola, Maru
Wong, Liang Ze
论文数: 0引用数: 0
h-index: 0
机构:
ASTAR, Inst High Performance Comp IHPC, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, SingaporeJohns Hopkins Univ, Dept Math, 3400 N Charles St, Baltimore, MD 21218 USA
机构:
Tsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R ChinaTsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
Ren, Shiquan
Wu, Chengyuan
论文数: 0引用数: 0
h-index: 0
机构:
Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
ASTAR, Inst High Performance Comp, Singapore 138632, SingaporeTsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
Wu, Chengyuan
Wu, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
Hebei Normal Univ, Ctr Topol & Geometry Based Technol, Shijiazhuang 050024, Hebei, Peoples R ChinaTsinghua Univ, Yau Math Sci Ctr, Beijing 100084, Peoples R China
机构:
Yau Mathematical Sciences Center, Tsinghua UniversityYau Mathematical Sciences Center, Tsinghua University
Shiquan REN
Chengyuan WU
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, National University of Singapore
Institute of High Performance Computing, A*STARYau Mathematical Sciences Center, Tsinghua University
Chengyuan WU
Jie WU
论文数: 0引用数: 0
h-index: 0
机构:
School of Mathematical Sciences, Hebei Normal University
Center for Topology and Geometry based Technology, Hebei NormalYau Mathematical Sciences Center, Tsinghua University