Integrated Control System Design for a Quaternion-Based Omnidirectional Quadrotor Drone

被引:0
作者
Pebrianti, Dwi [1 ]
Bayuaji, Luhur [2 ]
Samad, Rosdiyana [3 ]
Hossain, Md Jobaher [4 ]
机构
[1] Int Islamic Univ malaysia, Dept Mech & Aerosp Engn, Kuala Lumpur, Malaysia
[2] INTI Int Univ, Fac Data Sci & Informat Technol, Nilai, Negeri Sembilan, Malaysia
[3] Univ Malaysia Pahang Al Sultan Abdulla, Fac Elect & Elect Engn, Pekan, Malaysia
[4] Int Islamic Univ malaysia, Fac Engn, Kuala Lumpur, Malaysia
来源
9TH INTERNATIONAL CONFERENCE ON MECHATRONICS ENGINEERING, ICOM 2024 | 2024年
关键词
quadcopter; quaternion; linear controller; complex system; unmanned aerial vehicles;
D O I
10.1109/ICOM61675.2024.10652273
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The study addresses the limitations of traditional quadrotors in achieving omnidirectional movement, which restricts their agility and adaptability in dynamic environments. This research introduces the Omnidirectional Stationary Flying Outstretched Drone, utilizing quaternions for orientation representation to avoid issues such as singularities and gimbal lock. The methodology involves developing a dynamic model that incorporates aerodynamic effects and implementing linear controllers, including PID and PI controllers, for precise altitude and attitude control. Simulation results show that the drone achieved a settling time of 5 seconds and an overshot of less than 5% in altitude control. Experimental validations confirm enhanced maneuverability and stability compared to conventional quadrotors.???
引用
收藏
页码:145 / 150
页数:6
相关论文
共 19 条
  • [1] Quadrotor Aggressive Deployment, Using a Quaternion-Based Spherical Chattering-Free Sliding-Mode Controller
    Abaunza, Hernan
    Castillo, Pedro
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (03) : 1979 - 1991
  • [2] Abdallah S. M, 2023, Converting a DJI Tello Quadcopter into a Facefollower Machine using the Haar Cascade with PID Controller, V7, P54, DOI [10.24086/cuesj.v7n2y2023.pp54-59, DOI 10.24086/CUESJ.V7N2Y2023.PP54-59]
  • [3] Andersen TS, 2017, INT CONF UNMAN AIRCR, P1597
  • [4] Attigui M., 2021, Autonomous drone Programming, DOI [10.13140/RG.2.2.29978.16329, DOI 10.13140/RG.2.2.29978.16329]
  • [5] Bouabdallah S., 2007, Techniques, V3727, P61
  • [6] Bry A, 2011, IEEE INT CONF ROBOT
  • [7] An Efficient Design and Implementation of a Quadrotor Unmanned Aerial Vehicle Using Quaternion-Based Estimator
    Dulf, Eva H.
    Saila, Mihnea
    Muresan, Cristina I.
    Miclea, Liviu C.
    [J]. MATHEMATICS, 2020, 8 (10) : 1 - 25
  • [8] Attitude and Altitude Nonlinear Control Regulation of a Quadcopter Using Quaternion Representation
    Esmail, Manal S.
    Merzban, Mohamed H.
    Khalaf, Ashraf A. M.
    Hamed, Hesham F. A.
    Hussein, Aziza I.
    [J]. IEEE ACCESS, 2022, 10 : 5884 - 5894
  • [9] Autonomous, Vision-based Flight and Live Dense 3D Mapping with a Quadrotor Micro Aerial Vehicle
    Faessler, Matthias
    Fontana, Flavio
    Forster, Christian
    Mueggler, Elias
    Pizzoli, Matia
    Scaramuzza, Davide
    [J]. JOURNAL OF FIELD ROBOTICS, 2016, 33 (04) : 431 - 450
  • [10] Frank A., 2007, AIAA GUID NAV CONTR, P1, DOI DOI 10.2514/6.2007-6318