Federated Learning-Based Prediction of Energy Consumption from Blockchain-Based Black Box Data for Electric Vehicles

被引:0
|
作者
Park, Jong-Hyuk [1 ]
Joe, In-Whee [1 ]
机构
[1] Hanyang Univ, Dept Comp Sci & Engn, Seoul 04763, South Korea
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 13期
关键词
electric vehicles; blockchain; federated learning; energy management; data security; machine learning; POISONING ATTACKS; SYSTEMS;
D O I
10.3390/app14135494
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In modern society, the proliferation of electric vehicles (EVs) is continuously increasing, presenting new challenges that necessitate integration with smart grids. The operational data from electric vehicles are voluminous, and the secure storage and management of these data are crucial for the efficient operation of the power grid. This paper proposes a novel system that utilizes blockchain technology to securely store and manage the black box data of electric vehicles. By leveraging the core characteristics of blockchain-immutability and transparency-the system records the operational data of electric vehicles and uses federated learning (FL) to predict their energy consumption based on these data. This approach allows the balanced management of the power grid's load, optimization of energy supply, and maintenance of grid stability while reducing costs. Additionally, the paper implements a searchable black box data storage system using a public blockchain, which offers cost efficiency and robust anonymity, thereby enhancing convenience for electric vehicle users and strengthening the stability of the power grid. This research presents an innovative approach to the integration of electric vehicles and smart grids, exploring ways to enhance the stability and energy efficiency of the power grid. The proposed system has been validated through real data and simulations, demonstrating its effectiveness and performance in managing black box data and predicting energy consumption, thereby improving the efficiency and stability of the power grid. This system is expected to empower electric vehicle users with data ownership and provide power suppliers with more accurate energy demand predictions, promoting sustainable energy consumption and efficient power grid operations.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Energy Demand Forecasting for Electric Vehicles Using Blockchain-Based Federated Learning
    Kausar, Firdous
    Al-Hamouz, Rami
    Hussain, Sajid
    IEEE ACCESS, 2024, 12 : 41287 - 41298
  • [2] A Survey on Blockchain-Based Federated Learning and Data Privacy
    Chhetri, Bipin
    Gopali, Saroj
    Olapojoye, Rukayat
    Dehbashi, Samin
    Namin, Akhar Siami
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 1311 - 1318
  • [3] Blockchain-Based Federated Learning for Data Privacy and Security
    Murugan, G.
    Divyashree, D.
    Ravisankar, P.
    Vasudevan, M.
    Karthikeyan, T.
    Singh, Devesh Pratap
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [4] A Survey on Blockchain-Based Federated Learning
    Wu, Lang
    Ruan, Weijian
    Hu, Jinhui
    He, Yaobin
    Pau, Giovanni
    FUTURE INTERNET, 2023, 15 (12)
  • [5] DSFL: a blockchain-based data sharing and federated learning framework
    Niu, Haiqian
    Zhang, Xing
    Chu, Zhiguang
    Shi, Wei
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [6] Blockchain-Based Distributed Federated Learning in Smart Grid
    Antal, Marcel
    Mihailescu, Vlad
    Cioara, Tudor
    Anghel, Ionut
    MATHEMATICS, 2022, 10 (23)
  • [7] A blockchain-based audit approach for encrypted data in federated learning
    Sun, Zhe
    Wan, Junping
    Yin, Lihua
    Cao, Zhiqiang
    Luo, Tianjie
    Wang, Bin
    DIGITAL COMMUNICATIONS AND NETWORKS, 2022, 8 (05) : 614 - 624
  • [8] A blockchain-based federated learning mechanism for privacy preservation of healthcare IoT data
    Moulahi, Wided
    Jdey, Imen
    Moulahi, Tarek
    Alawida, Moatsum
    Alabdulatif, Abdulatif
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 167
  • [9] Energy Consumption Prediction of Electric Vehicles Based on Big Data Approach
    Foiadelli, Federica
    Longo, Michela
    Miraftabzadeh, Seyedmahdi
    2018 IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2018 IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC / I&CPS EUROPE), 2018,
  • [10] Secure Data Sharing in Federated Learning through Blockchain-Based Aggregation
    Liu, Bowen
    Tang, Qiang
    FUTURE INTERNET, 2024, 16 (04)