THE MINIMAL FRIED AVERAGE ENTROPY FOR HIGHER-RANK CARTAN ACTIONS

被引:0
|
作者
Friedman, Eduardo [1 ]
Johansson, Fredrik [2 ,3 ]
Ramirez-Raposo, Gabriel [4 ]
机构
[1] Univ Chile, Fac Ciencias, Dept Matemat, Casilla 653, Santiago, Chile
[2] Univ Bordeaux, INRIA, Bordeaux Sud Ouest, F-33400 Talence, France
[3] Univ Bordeaux, Inst Math Bordeaux, F-33400 Talence, France
[4] Pontificia Univ Catolica Chile, Fac Matemat, Vicuna Mackenna 4860, Santiago, Chile
关键词
REGULATOR;
D O I
10.1090/mcom/3582
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find the minimal value of the Fried average entropy by proving new lower bounds for regulators of totally real number fields.
引用
收藏
页码:973 / 978
页数:6
相关论文
共 50 条
  • [31] MEASURE AND COCYCLE RIGIDITY FOR CERTAIN NONUNIFORMLY HYPERBOLIC ACTIONS OF HIGHER-RANK ABELIAN GROUPS
    Katok, Anatole
    Rodriguez Hertz, Federico
    JOURNAL OF MODERN DYNAMICS, 2010, 4 (03) : 487 - 515
  • [32] Cohomological equation and cocycle rigidity of parabolic actions in some higher-rank Lie groups
    Wang, Zhenqi Jenny
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2015, 25 (06) : 1956 - 2020
  • [33] COHOMOLOGY OF DYNAMICAL-SYSTEMS AND RIGIDITY OF PARTIALLY HYPERBOLIC ACTIONS OF HIGHER-RANK LATTICES
    NITICA, V
    TOROK, A
    DUKE MATHEMATICAL JOURNAL, 1995, 79 (03) : 751 - 810
  • [34] The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory
    Mieczkowski, David
    JOURNAL OF MODERN DYNAMICS, 2007, 1 (01) : 61 - 92
  • [35] Hydrodynamics of higher-rank gauge theories
    Qi, Marvin
    Hart, Oliver
    Friedman, Aaron J.
    Nandkishore, Rahul
    Lucas, Andrew
    SCIPOST PHYSICS, 2023, 14 (03):
  • [36] Geometry of higher-rank numerical ranges
    Choi, Man-Duen
    Giesinger, Michael
    Holbrook, John A.
    Kribs, David W.
    LINEAR & MULTILINEAR ALGEBRA, 2008, 56 (1-2): : 53 - 64
  • [37] Simplicity of twisted C*-algebras of higher-rank graphs and crossed products by quasifree actions
    Kumjian, Alex
    Pask, David
    Sims, Aidan
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2016, 10 (02) : 515 - 549
  • [38] A construction of higher-rank lattice rules
    Langtry, TN
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 55 (1-3) : 103 - 111
  • [39] HIGHER-RANK NUMERICAL RANGES AND DILATIONS
    Gau, Hwa-Long
    Li, Chi-Kwong
    Wu, Pei Yuan
    JOURNAL OF OPERATOR THEORY, 2010, 63 (01) : 181 - 189
  • [40] SYMMETRY OF ENTROPY IN HIGHER RANK DIAGONALIZABLE ACTIONS AND MEASURE CLASSIFICATION
    Einsiedler, Manfred
    Lindenstrauss, Elon
    JOURNAL OF MODERN DYNAMICS, 2018, 13 : 163 - 185