A Photochemical Overview of Molecular Solar Thermal Energy Storage

被引:11
作者
Gimenez-Gomez, Alberto [1 ]
Magson, Lucien [1 ]
Penin, Beatriz [1 ]
Sanosa, Nil [1 ]
Soilan, Jacobo [1 ]
Losantos, Raul [1 ,2 ,3 ]
Sampedro, Diego [1 ]
机构
[1] Univ La Rioja, Ctr Invest Sintesis Quim CISQ, Dept Chem, Madre de Dios 53, Logrono 26006, Spain
[2] Univ Paris Cite, ITODYS, F-75006 Paris, France
[3] CNRS, F-75006 Paris, France
来源
PHOTOCHEM | 2022年 / 2卷 / 03期
关键词
MOST; solar energy storage; solar fuels; norbornadiene; azobenzene; dihydroazulene; CIS-TRANS ISOMERIZATION; DENSITY-FUNCTIONAL THEORY; CRYSTAL-STRUCTURE; SUBSTITUTED NORBORNADIENES; AZOBENZENE; PHOTOISOMERIZATION; PHOTOSWITCHES; DERIVATIVES; PHOTOCHROMISM; PERFORMANCE;
D O I
10.3390/photochem2030045
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design of molecular solar fuels is challenging because of the long list of requirements these molecules have to fulfil: storage density, solar harvesting capacity, robustness, and heat release ability. All of these features cause a paradoxical design due to the conflicting effects found when trying to improve any of these properties. In this contribution, we will review different types of compounds previously suggested for this application. Each of them present several advantages and disadvantages, and the scientific community is still struggling to find the ideal candidate suitable for practical applications. The most promising results have been found using norbornadiene-based systems, although the use of other alternatives like azobenzene or dihydroazulene cannot be discarded. In this review, we primarily focus on highlighting the optical and photochemical aspects of these three families, discussing the recently proposed systems and recent advances in the field.
引用
收藏
页码:694 / 716
页数:23
相关论文
共 105 条
[41]   Expanding the Hammett Correlations for the Vinylheptafulvene Ring-Closure Reaction [J].
Kilde, Martin Drohse ;
Hansen, Mia Harring ;
Broman, Soren Lindbaek ;
Mikkelsen, Kurt V. ;
Nielsen, Mogens Brondsted .
EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2017, 2017 (06) :1052-1062
[42]  
Koerstz M., PeerJ Physical Chemistry, V2021, pe16, DOI DOI 10.7717/PEERJ-PCHEM.16
[43]   Azobenzene-Functionalized Carbon Nanotubes As High-Energy Density Solar Thermal Fuels [J].
Kolpak, Alexie M. ;
Grossman, Jeffrey C. .
NANO LETTERS, 2011, 11 (08) :3156-3162
[44]  
Kucharski TJ, 2014, NAT CHEM, V6, P441, DOI [10.1038/NCHEM.1918, 10.1038/nchem.1918]
[45]   Chemical solutions for the closed-cycle storage of solar energy [J].
Kucharski, Timothy J. ;
Tian, Yancong ;
Akbulatov, Sergey ;
Boulatov, Roman .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (11) :4449-4472
[46]   Optimization of Norbornadiene Compounds for Solar Thermal Storage by First-Principles Calculations [J].
Kuisma, Mikael ;
Lundin, Angelica ;
Moth-Poulsen, Kasper ;
Hyldgaard, Per ;
Erhart, Paul .
CHEMSUSCHEM, 2016, 9 (14) :1786-1794
[47]   PHOTOCHEMISTRY OF AZOBENZENE-CONTAINING POLYMERS [J].
KUMAR, GS ;
NECKERS, DC .
CHEMICAL REVIEWS, 1989, 89 (08) :1915-1925
[48]   Intermolecular London Dispersion Interactions of Azobenzene Switches for Tuning Molecular Solar Thermal Energy Storage Systems [J].
Kunz, Anne ;
Heindl, Andreas H. ;
Dreos, Ambra ;
Wang, Zhihang ;
Moth-Poulsen, Kasper ;
Becker, Jonathan ;
Wegner, Hermann A. .
CHEMPLUSCHEM, 2019, 84 (08) :1145-1148
[49]   Azobenzene photoisomerization quantum yields in methanol redetermined [J].
Ladanyi, Vit ;
Dvorak, Pavel ;
Al Anshori, Jamaludin ;
Vetrakova, Lubica ;
Wirz, Jakob ;
Heger, Dominik .
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2017, 16 (12) :1757-1761
[50]   The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018 [J].
Lee, D. S. ;
Fahey, D. W. ;
Skowron, A. ;
Allen, M. R. ;
Burkhardt, U. ;
Chen, Q. ;
Doherty, S. J. ;
Freeman, S. ;
Forster, P. M. ;
Fuglestvedt, J. ;
Gettelman, A. ;
De Leon, R. R. ;
Lim, L. L. ;
Lund, M. T. ;
Millar, R. J. ;
Owen, B. ;
Penner, J. E. ;
Pitari, G. ;
Prather, M. J. ;
Sausen, R. ;
Wilcox, L. J. .
ATMOSPHERIC ENVIRONMENT, 2021, 244