Visualization of explainable artificial intelligence for GeoAI

被引:1
|
作者
Roussel, Cedric [1 ]
机构
[1] Mainz Univ Appl Sci, Inst Spatial Informat & Surveying Technol, I3mainz, Mainz, Germany
来源
FRONTIERS IN COMPUTER SCIENCE | 2024年 / 6卷
关键词
machine learning; explainable AI; Shapley values; visualization; geospatial data;
D O I
10.3389/fcomp.2024.1414923
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Shapley additive explanations are a widely used technique for explaining machine learning models. They can be applied to basically any type of model and provide both global and local explanations. While there are different plots available to visualize Shapley values, there is a lack of suitable visualization for geospatial use cases, resulting in the loss of the geospatial context in traditional plots. This study presents a concept for visualizing Shapley values in geospatial use cases and demonstrate its feasibility through an exemplary use case-predicting bike activity in a rental bike system. The visualizations show that visualizing Shapley values on geographic maps can provide valuable insights that are not visible in traditional plots for Shapley additive explanations. Geovisualizations are recommended for explaining machine learning models in geospatial applications or for extracting knowledge about real-world applications. Suitable visualizations for the considered use case are a proportional symbol map and a mapping of computed Voronoi values to the street network.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Explainable artificial intelligence: a comprehensive review
    Minh, Dang
    Wang, H. Xiang
    Li, Y. Fen
    Nguyen, Tan N.
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (05) : 3503 - 3568
  • [22] A review of Explainable Artificial Intelligence in healthcare
    Sadeghi, Zahra
    Alizadehsani, Roohallah
    Cifci, Mehmet Akif
    Kausar, Samina
    Rehman, Rizwan
    Mahanta, Priyakshi
    Bora, Pranjal Kumar
    Almasri, Ammar
    Alkhawaldeh, Rami S.
    Hussain, Sadiq
    Alatas, Bilal
    Shoeibi, Afshin
    Moosaei, Hossein
    Hladik, Milan
    Nahavandi, Saeid
    Pardalos, Panos M.
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 118
  • [23] A historical perspective of explainable Artificial Intelligence
    Confalonieri, Roberto
    Coba, Ludovik
    Wagner, Benedikt
    Besold, Tarek R.
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (01)
  • [24] Explainable Artificial Intelligence (XAI) in auditing
    Zhang, Chanyuan
    Cho, Soohyun
    Vasarhelyi, Miklos
    INTERNATIONAL JOURNAL OF ACCOUNTING INFORMATION SYSTEMS, 2022, 46
  • [25] Fuzzy Networks for Explainable Artificial Intelligence
    Arabikhan, Farzad
    Gegov, Alexander
    Kaymak, Uzay
    Akbari, Negar
    2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI, 2023, : 199 - 200
  • [26] Explainable Artificial Intelligence (XAI) in Insurance
    Owens, Emer
    Sheehan, Barry
    Mullins, Martin
    Cunneen, Martin
    Ressel, Juliane
    Castignani, German
    RISKS, 2022, 10 (12)
  • [27] Explainable & Safe Artificial Intelligence in Radiology
    Do, Synho
    JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY, 2024, 85 (05): : 834 - 847
  • [28] Explainable artificial intelligence for education and training
    Fiok, Krzysztof
    Farahani, Farzad, V
    Karwowski, Waldemar
    Ahram, Tareq
    JOURNAL OF DEFENSE MODELING AND SIMULATION-APPLICATIONS METHODOLOGY TECHNOLOGY-JDMS, 2022, 19 (02): : 133 - 144
  • [29] Explainable Artificial Intelligence for Breast Tumour Classification: Helpful or Harmful
    Rafferty, Amy
    Nenutil, Rudolf
    Rajan, Ajitha
    INTERPRETABILITY OF MACHINE INTELLIGENCE IN MEDICAL IMAGE COMPUTING, IMIMIC 2022, 2022, 13611 : 104 - 123
  • [30] Symptom Based Explainable Artificial Intelligence Model for Leukemia Detection
    Hossain, Mohammad Akter
    Islam, A. K. M. Muzahidul
    Islam, Salekul
    Shatabda, Swakkhar
    Ahmed, Ashir
    IEEE ACCESS, 2022, 10 : 57283 - 57298