Visualization of explainable artificial intelligence for GeoAI

被引:1
|
作者
Roussel, Cedric [1 ]
机构
[1] Mainz Univ Appl Sci, Inst Spatial Informat & Surveying Technol, I3mainz, Mainz, Germany
来源
FRONTIERS IN COMPUTER SCIENCE | 2024年 / 6卷
关键词
machine learning; explainable AI; Shapley values; visualization; geospatial data;
D O I
10.3389/fcomp.2024.1414923
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Shapley additive explanations are a widely used technique for explaining machine learning models. They can be applied to basically any type of model and provide both global and local explanations. While there are different plots available to visualize Shapley values, there is a lack of suitable visualization for geospatial use cases, resulting in the loss of the geospatial context in traditional plots. This study presents a concept for visualizing Shapley values in geospatial use cases and demonstrate its feasibility through an exemplary use case-predicting bike activity in a rental bike system. The visualizations show that visualizing Shapley values on geographic maps can provide valuable insights that are not visible in traditional plots for Shapley additive explanations. Geovisualizations are recommended for explaining machine learning models in geospatial applications or for extracting knowledge about real-world applications. Suitable visualizations for the considered use case are a proportional symbol map and a mapping of computed Voronoi values to the street network.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Scientific Exploration and Explainable Artificial Intelligence
    Carlos Zednik
    Hannes Boelsen
    Minds and Machines, 2022, 32 : 219 - 239
  • [2] Explainable artificial intelligence: an analytical review
    Angelov, Plamen P.
    Soares, Eduardo A.
    Jiang, Richard
    Arnold, Nicholas I.
    Atkinson, Peter M.
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2021, 11 (05)
  • [3] Scientific Exploration and Explainable Artificial Intelligence
    Zednik, Carlos
    Boelsen, Hannes
    MINDS AND MACHINES, 2022, 32 (01) : 219 - 239
  • [4] xxAI - Beyond Explainable Artificial Intelligence
    Holzinger, Andreas
    Goebel, Randy
    Fong, Ruth
    Moon, Taesup
    Mueller, Klaus-Robert
    Samek, Wojciech
    XXAI - BEYOND EXPLAINABLE AI: International Workshop, Held in Conjunction with ICML 2020, July 18, 2020, Vienna, Austria, Revised and Extended Papers, 2022, 13200 : 3 - 10
  • [5] Explainable artificial intelligence for crypto asset allocation
    Babaei, Golnoosh
    Giudici, Paolo
    Raffinetti, Emanuela
    FINANCE RESEARCH LETTERS, 2022, 47
  • [6] Explainable artificial intelligence for cybersecurity: a literature survey
    Fabien Charmet
    Harry Chandra Tanuwidjaja
    Solayman Ayoubi
    Pierre-François Gimenez
    Yufei Han
    Houda Jmila
    Gregory Blanc
    Takeshi Takahashi
    Zonghua Zhang
    Annals of Telecommunications, 2022, 77 : 789 - 812
  • [7] Explainable and transparent artificial intelligence for public policymaking
    Papadakis, Thanasis
    Christou, Ioannis T.
    Ipektsidis, Charalampos
    Soldatos, John
    Amicone, Alessandro
    DATA & POLICY, 2024, 6
  • [8] Explainable Artificial Intelligence for Kids
    Alonso, Jose M.
    PROCEEDINGS OF THE 11TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT 2019), 2019, 1 : 134 - 141
  • [9] Advances in Explainable Artificial Intelligence (xAI) in Finance
    Klein, Tony
    Walther, Thomas
    FINANCE RESEARCH LETTERS, 2024, 70
  • [10] Explainable Artificial Intelligence in education
    Khosravi H.
    Shum S.B.
    Chen G.
    Conati C.
    Tsai Y.-S.
    Kay J.
    Knight S.
    Martinez-Maldonado R.
    Sadiq S.
    Gašević D.
    Computers and Education: Artificial Intelligence, 2022, 3