Application of Deep Learning Methods for Trajectory Planning Based on Image Information

被引:1
作者
Babiarz, Artur [1 ]
Kustra, Malgorzata [1 ]
Wen, Shuhuan [2 ,3 ]
机构
[1] Silesian Tech Univ, Dept Automat Control & Robot, Akad 16 St, PL-44100 Gliwice, Poland
[2] Yanshan Univ, Minist Educ Intelligent Control Syst & Intelligent, Res Ctr, Dept Engn, Qinhuangdao, Peoples R China
[3] Yanshan Univ, Key Lab Ind Comp Control Engn Hebei Prov, Qinhuangdao, Peoples R China
关键词
mobile robot; deep learning; image; neural network;
D O I
10.12913/22998624/191924
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work aims to develop a mobile robot utilizing neural network technology. The algorithm, programmed in Python on a Raspberry Pi 4B platform, is detailed across four main chapters. These chapters cover the fundamental assumptions of deep learning, the construction of the platform, and the research validating pattern recognition accuracy under various disturbances. The mobile platform employs a neural network to analyze selected traffic signs and translates the recognized patterns into corresponding motor movements.
引用
收藏
页码:247 / 258
页数:12
相关论文
共 19 条
  • [1] Bui T.L., 2023, Applied Computer Science, V19, P82
  • [2] Chollet F., 2021, Deep Learning with Python
  • [3] Coates Adam, 2011, JMLR WORKSHOP C P, P215
  • [4] Fundamental Technologies in Modern Speech Recognition
    Furui, Sadaoki
    Deng, Li
    Gales, Mark
    Ney, Hermann
    Tokuda, Keiichi
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2012, 29 (06) : 16 - 17
  • [5] A fast learning algorithm for deep belief nets
    Hinton, Geoffrey E.
    Osindero, Simon
    Teh, Yee-Whye
    [J]. NEURAL COMPUTATION, 2006, 18 (07) : 1527 - 1554
  • [6] Mobile Robot Navigation Using Deep Reinforcement Learning
    Lee, Min-Fan Ricky
    Yusuf, Sharfiden Hassen
    [J]. PROCESSES, 2022, 10 (12)
  • [7] Li HS, 2014, Arxiv, DOI arXiv:1412.4526
  • [8] Maturana D, 2015, IEEE INT CONF ROBOT, P3471, DOI 10.1109/ICRA.2015.7139679
  • [9] Nair V., 2009, NIPS, P22
  • [10] Netzer Y, 2011, NIPS WORKSH DEEP LEA, V2011, P7