Na+ orientates Jahn-Teller effect to tune Li+ diffusion pathway and kinetics for Single-Crystal Ni-rich LiNixCoyMn1-x-yO2 cathode materials

被引:7
作者
Jian, Jiyuan [1 ]
Xu, Xing [2 ]
Pan, Xiaoyi [1 ]
Han, Guokang [1 ]
Xiao, Rang [1 ]
Liu, Ziwei [1 ]
Sun, Dandan [1 ]
Zhang, Xin [1 ]
Zhou, Qingjie [1 ]
Zhu, He [3 ]
Yin, Geping [1 ]
Huo, Hua [1 ]
Ma, Yulin [1 ]
Zuo, Pengjian [1 ]
Cheng, Xinqun [1 ]
Du, Chunyu [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, State Key Lab Space Power Sources, Harbin 150001, Peoples R China
[2] Guizhou Meiling Power Source Co Ltd, Zunyi 563003, Guizhou, Peoples R China
[3] Nanjing Univ Sci & Technol, Herbert Gleiter Inst Nanosci, Sch Mat Sci & Engn, Nanjing 210094, Peoples R China
关键词
Lithium-ion batteries; Ni-rich layered oxides; Single crystals; Na plus doping; Li plus diffusion kinetics; CAPACITY FADING MECHANISMS; TOTAL-ENERGY CALCULATIONS; LAYERED OXIDE CATHODES; LITHIUM;
D O I
10.1016/j.cej.2024.154344
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Single-crystallization is an effective strategy for enhancing both capacity and stability of Ni-rich LiNi1-xyCoxMnyO2 (NCM) cathode materials, especially at high cut-off voltages. However, the kinetics limitation of solid-phase Li+ diffusion is a major concern because of the long diffusion path in large single-crystal particles. To address this issue, we synthesize a Na-doped single-crystal LiNi0.82Co0.125Mn0.055O2 (NCM-Na) cathode material by a facile mixed-molten-salt sintering process. Na+ is revealed to be uniformly doped at the Li+ lattice sites within the entire single-crystal particles. This Na+ doping effectively enhances the dynamics of Li+ transport in the layered oxide phases. The NCM-Na material with 2 at.% Na doping shows a Li+ diffusion coefficient up to more than 8 times higher than pristine NCM. In-situ X-ray diffraction and finite element analysis demonstrate significantly facilitated H1-H2-H3 phase transition in NCM-Na materials, compared with the severe phase separation phenomenon in NCM counterpart, hoisting their rate capacity and structure stability. Thus, the NCM-Na material achieves a superior reversible capacity of 177.7 mAh/g at 5C, and a capacity retention of 94.4 % after 100 cycles at 0.5C at a high cut-off voltage of 4.5 V. By density function theory calculations, we reveal that Na+ doping can selectively stabilize the surrounding Li+ at the second farthest hexagonal vertexes by tuning the orientation of the Jahn-Teller effect of Ni3+. These Li+ ions frame a high-speed pathway for preferential Li+ diffusion, which promotes the Li+ diffusion kinetics even in highly delithiated states. Our findings provide insights into the Na+ doping mechanism and present a low-cost, highly efficient, and scalable method to enhance the performance of single-crystal Ni-rich NCM materials.
引用
收藏
页数:10
相关论文
共 56 条
[41]   Nondilute diffusion from first principles:: Li diffusion in LixTiS2 [J].
Van der Ven, Anton ;
Thomas, John C. ;
Xu, Qingchuan ;
Swoboda, Benjamin ;
Morgan, Dane .
PHYSICAL REVIEW B, 2008, 78 (10)
[42]   Kinetics Tuning of Li-Ion Diffusion in Layered Li(NixMnyCoz)O2 [J].
Wei, Yi ;
Zheng, Jiaxin ;
Cui, Suihan ;
Song, Xiaohe ;
Su, Yantao ;
Deng, Wenjun ;
Wu, Zhongzhen ;
Wang, Xinwei ;
Wang, Weidong ;
Rao, Mumin ;
Lin, Yuan ;
Wang, Chongmin ;
Amine, Khalil ;
Pan, Feng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (26) :8364-8367
[43]   In situsynthesis of a nickel concentration gradient structure of Ni-rich LiNi0.8Co0.15Al0.05O2with promising superior electrochemical properties at high cut-off voltage [J].
Wu, Kang ;
Wang, Junyang ;
Li, Qi ;
Yang, Yuqiang ;
Deng, Xin ;
Dang, Rongbin ;
Wu, Meimei ;
Wu, Zhijian ;
Xiao, Xiaoling ;
Yu, Xiqian .
NANOSCALE, 2020, 12 (20) :11182-11191
[44]   Insight of Synthesis of Single Crystal Ni-Rich LiNi1-x-yCoxMnyO2 Cathodes [J].
Wu, Yingqiang ;
Wu, Hanfeng ;
Deng, Jiushuai ;
Han, Zhiding ;
Xiao, Xiang ;
Wang, Li ;
Chen, Zonghai ;
Deng, Yida ;
He, Xiangming .
ADVANCED ENERGY MATERIALS, 2024, 14 (11)
[45]   Spreading monoclinic boundary network between hexagonal primary grains for high performance Ni-rich cathode materials [J].
Xu, Xing ;
Zhu, He ;
Tang, Yu ;
Wang, Liguang ;
Zhang, Qinghua ;
Ren, Yang ;
Lan, Si ;
Xiang, Lizhi ;
Jian, Jiyuan ;
Huo, Hua ;
Chen, Guo-Xing ;
Gu, Lin ;
Yin, Geping ;
Wang, Xun-Li ;
Sun, Xueliang ;
Du, Chunyu ;
Liu, Qi .
NANO ENERGY, 2022, 100
[46]   Radially Oriented Single-Crystal Primary Nanosheets Enable Ultrahigh Rate and Cycling Properties of LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium-Ion Batteries [J].
Xu, Xing ;
Huo, Hua ;
Jian, Jiyuan ;
Wang, Liguang ;
Zhu, He ;
Xu, Sheng ;
He, Xiaoshu ;
Yin, Geping ;
Du, Chunyu ;
Sun, Xueliang .
ADVANCED ENERGY MATERIALS, 2019, 9 (15)
[47]   Progressive concentration gradient nickel-rich oxide cathode material for high-energy and long-life lithium-ion batteries [J].
Xu, Xing ;
Xiang, Lizhi ;
Wang, Liguang ;
Jian, Jiyuan ;
Du, Chunyu ;
He, Xiaoshu ;
Huo, Hua ;
Cheng, Xinqun ;
Yin, Geping .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (13) :7728-7735
[48]   Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries [J].
Yan, Pengfei ;
Zheng, Jianming ;
Gu, Meng ;
Xiao, Jie ;
Zhang, Ji-Guang ;
Wang, Chong-Min .
NATURE COMMUNICATIONS, 2017, 8
[49]   Pre-pulverizing Ni-rich layered oxide cathodes via "liquid explosive" infiltration toward endurable 4.5 V lithium batteries [J].
Yang, Qifan ;
Yao, Zhenguo ;
Lai, Chuanzhong ;
Li, Chilin .
ENERGY STORAGE MATERIALS, 2022, 50 :819-828
[50]   Surface Modification of the LiNi0.8Co0.1Mn0.1O2 Cathode Material by Coating with FePO4 with a Yolk-Shell Structure for Improved Electrochemical Performance [J].
Zha, Guojun ;
Luo, Yongping ;
Hu, Naigen ;
Ouyang, Chuying ;
Hou, Haoqing .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (32) :36046-36053