Remaining useful life prediction of lithium-ion batteries based on data denoising and improved transformer

被引:2
作者
Zhou, Kaile [1 ,2 ,3 ]
Zhang, Zhiyue [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Anhui Prov Key Lab Philosophy & Social Sci Smart M, Hefei 230009, Peoples R China
[3] Hefei Univ Technol, Key Lab Proc Optimizat & Intelligent Decis Making, Minist Educ, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Remaining useful life; Capacity regeneration; Mode decomposition; Improved transformer; MODE DECOMPOSITION;
D O I
10.1016/j.est.2024.113749
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurately predicting the remaining useful life (RUL) of lithium-ion batteries (LIBs) is essential in improving the safety and availability of energy storage systems. However, the capacity regeneration phenomenon of LIBs occurs during actual usage, seriously affecting the accuracy of LIBs' RUL prediction. This study proposes a RUL prediction method of LIBs based on mode decomposition and an improved transformer. Firstly, to mitigate the impact of capacity degradation, we use the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method to decompose the battery capacity degradation into multi-scale component sequences. However, some noise remains in the high-frequency data output by CEEMDAN decomposition. To minimize noise impact on the accuracy of the prediction results, a single high-frequency data is then decomposed into multiple rich-featured subsequences using the variational mode decomposition. Finally, an improved transformer model extracts global and local features from these subsequences to improve the RUL of LIBs prediction accuracy. The proposed method is validated on two widely used public datasets, NASA and CALCE. Experimental results show that the proposed method has lower errors in some evaluation metrics. Compared to the four state-of-the-art methods, the proposed method improves the R-squared metric by 23.37 % and 39.81 %, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on a Hybrid Deep Learning Model
    Chen, Chao
    Wei, Jie
    Li, Zhenhua
    PROCESSES, 2023, 11 (08)
  • [42] Remaining useful life prediction of lithium-ion batteries based on hybrid ISSA-LSTM
    Zou H.
    Chai Y.
    Yang Q.
    Chen J.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2023, 51 (19): : 21 - 31
  • [43] iTransformer Network Based Approach for Accurate Remaining Useful Life Prediction in Lithium-Ion Batteries
    Jha, Anurag
    Dorkar, Oorja
    Biswas, Atriya
    Emadi, Ali
    2024 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO, ITEC 2024, 2024,
  • [44] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error
    Tang, Shengjin
    Yu, Chuanqiang
    Wang, Xue
    Guo, Xiaosong
    Si, Xiaosheng
    ENERGIES, 2014, 7 (02): : 520 - 547
  • [45] Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Improved Variational Mode Decomposition and Machine Learning Algorithm
    Sun, Chuang
    Qu, An
    Zhang, Jun
    Shi, Qiyang
    Jia, Zhenhong
    ENERGIES, 2023, 16 (01)
  • [46] Remaining useful life prediction of lithium-ion batteries based on autoregression with exogenous variables model
    Huang, Zhelin
    Ma, Zhihua
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 252
  • [47] A novel denoising autoencoder hybrid network for remaining useful life estimation of lithium-ion batteries
    Xia, Wei
    Xu, Jinli
    Liu, Baolei
    Duan, Huiyun
    ENERGY SCIENCE & ENGINEERING, 2024, 12 (08) : 3390 - 3400
  • [48] Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Neural Network and Adaptive Unscented Kalman Filter
    Wu, Lingtao
    Guo, Wenhao
    Tang, Yuben
    Sun, Youming
    Qin, Tuanfa
    ELECTRONICS, 2024, 13 (13)
  • [49] Lithium-ion batteries remaining useful life prediction based on a mixture of empirical mode decomposition and ARIMA model
    Zhou, Yapeng
    Huang, Miaohua
    MICROELECTRONICS RELIABILITY, 2016, 65 : 265 - 273
  • [50] Indirect prediction of remaining useful life for lithium-ion batteries based on improved multiple kernel extreme learning machine
    Zhang, Yingda
    Ma, Hongyan
    Wang, Shuai
    Li, Shengyan
    Guo, Rong
    JOURNAL OF ENERGY STORAGE, 2023, 64