Remaining useful life prediction of lithium-ion batteries based on data denoising and improved transformer

被引:2
作者
Zhou, Kaile [1 ,2 ,3 ]
Zhang, Zhiyue [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Management, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Anhui Prov Key Lab Philosophy & Social Sci Smart M, Hefei 230009, Peoples R China
[3] Hefei Univ Technol, Key Lab Proc Optimizat & Intelligent Decis Making, Minist Educ, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Remaining useful life; Capacity regeneration; Mode decomposition; Improved transformer; MODE DECOMPOSITION;
D O I
10.1016/j.est.2024.113749
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurately predicting the remaining useful life (RUL) of lithium-ion batteries (LIBs) is essential in improving the safety and availability of energy storage systems. However, the capacity regeneration phenomenon of LIBs occurs during actual usage, seriously affecting the accuracy of LIBs' RUL prediction. This study proposes a RUL prediction method of LIBs based on mode decomposition and an improved transformer. Firstly, to mitigate the impact of capacity degradation, we use the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method to decompose the battery capacity degradation into multi-scale component sequences. However, some noise remains in the high-frequency data output by CEEMDAN decomposition. To minimize noise impact on the accuracy of the prediction results, a single high-frequency data is then decomposed into multiple rich-featured subsequences using the variational mode decomposition. Finally, an improved transformer model extracts global and local features from these subsequences to improve the RUL of LIBs prediction accuracy. The proposed method is validated on two widely used public datasets, NASA and CALCE. Experimental results show that the proposed method has lower errors in some evaluation metrics. Compared to the four state-of-the-art methods, the proposed method improves the R-squared metric by 23.37 % and 39.81 %, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Prediction of Remaining Useful Life of Lithium-ion Battery Based on Improved Auxiliary Particle Filter
    Li, Huan
    Liu, Zhitao
    Su, Hongye
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1267 - 1272
  • [22] Remaining useful life prediction of lithium-ion battery based on an improved particle filter algorithm
    Xie, Guo
    Peng, Xi
    Li, Xin
    Hei, Xinhong
    Hu, Shaolin
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 98 (06) : 1365 - 1376
  • [23] Online Remaining Useful Life Prediction of Lithium-ion Batteries Based on Hybrid Model
    Sun, Jing
    Yan, Huiyi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2025, 172 (04)
  • [24] Early Prediction of Remaining Useful Life for Lithium-Ion Batteries with the State Space Model
    Liang, Yuqi
    Zhao, Shuai
    ENERGIES, 2024, 17 (24)
  • [25] A remaining useful life prediction approach for lithium-ion batteries using Kalman filter and an improved particle filter
    Mo, Baohua
    Yu, Jingsong
    Tang, Diyin
    Liu, Hao
    Yu, Jingsong
    2016 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2016,
  • [26] An Adaptive Noise Reduction Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries
    Qu, Wenyu
    Chen, Guici
    Zhang, Tingting
    ENERGIES, 2022, 15 (19)
  • [27] Early prediction of remaining useful life for lithium-ion batteries based on CEEMDAN-transformer-DNN hybrid model
    Cai, Yuxiang
    Li, Weimin
    Zahid, Taimoor
    Zheng, Chunhua
    Zhang, Qingguang
    Xu, Kun
    HELIYON, 2023, 9 (07)
  • [28] A Denoising SVR-MLP Method for Remaining Useful Life Prediction of Lithium-ion Battery
    Liu, Weirong
    Yan, Lisen
    Zhang, Xiaoyong
    Gao, Dianzhu
    Chen, Bin
    Yang, Yingze
    Jiang, Fu
    Huang, Zhiwu
    Peng, Jun
    2019 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2019, : 545 - 550
  • [29] Remaining useful life prediction of lithium-ion batteries using a fusion method based on Wasserstein GAN
    Zhou Wending
    Bao Shijian
    Xu Fangmin
    Zhao Chenglin
    TheJournalofChinaUniversitiesofPostsandTelecommunications, 2020, 27 (01) : 1 - 9
  • [30] A health indicator extraction based on surface temperature for lithium-ion batteries remaining useful life prediction
    Feng, Hailin
    Song, Dandan
    JOURNAL OF ENERGY STORAGE, 2021, 34