Nearly optimal state preparation for quantum simulations of lattice gauge theories

被引:6
作者
Kane, Christopher F. [1 ]
Gomes, Niladri [2 ,4 ]
Kreshchuk, Michael [3 ]
机构
[1] Univ Arizona, Dept Phys, Tucson, AZ 85719 USA
[2] Appl Math & Computat Res Div, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[3] Phys Div, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[4] Univ Chicago, Chicago, IL 60637 USA
关键词
HAMILTONIAN SIMULATION; COMPUTATION; SCATTERING; ALGORITHM; SYSTEMS;
D O I
10.1103/PhysRevA.110.012455
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present several improvements to the recently developed ground-state preparation algorithm based on the quantum eigenvalue transformation for unitary matrices (QETU), apply this algorithm to a lattice formulation of U(1) gauge theory in (2 + 1) dimensions, as well as propose an alternative application of QETU, a highly efficient preparation of Gaussian distributions. The QETU technique was originally proposed as an algorithm for nearly optimal ground-state preparation and ground-state energy estimation on early fault-tolerant devices. It uses the time-evolution input model, which can potentially overcome the large overall prefactor in the asymptotic gate cost arising in similar algorithms based on the Hamiltonian input model. We present modifications to the original QETU algorithm that significantly reduce the cost for the cases of both exact and Trotterized implementation of the time evolution circuit. We use QETU to prepare the ground state of a U(1) lattice gauge theory in two spatial dimensions, explore the dependence of computational resources on the desired precision and system parameters, and discuss the applicability of our results to general lattice gauge theories. We also demonstrate how the QETU technique can be utilized for preparing Gaussian distributions and wave packets in a way which outperforms existing algorithms for as little as nq >= 2-5 qubits.
引用
收藏
页数:29
相关论文
共 148 条
[1]  
Cortese JA, 2018, Arxiv, DOI [arXiv:1803.01958, 10.48550/arxiv.1803.01958, DOI 10.48550/ARXIV.1803.01958]
[2]   Simulations of many-body Fermi systems on a universal quantum computer [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2586-2589
[3]  
Aharonov D., 2003, P 35 ANN ACM S THEOR, Vquant-ph, P0301023, DOI DOI 10.1145/780542.780546
[4]   Spectrum of digitized QCD: Glueballs in a S(1080) gauge theory [J].
Alexandru, Andrei ;
Bedaque, Paulo F. ;
Brett, Ruairi ;
Lamm, Henry .
PHYSICAL REVIEW D, 2022, 105 (11)
[5]   Gluon field digitization for quantum computers [J].
Alexandru, Andrei ;
Bedaque, Paulo F. ;
Harmalkar, Siddhartha ;
Lamm, Henry ;
Lawrence, Scott ;
Warrington, Neill C. .
PHYSICAL REVIEW D, 2019, 100 (11)
[6]   Irreducible SU(3) Schwinger bosons [J].
Anishetty, Ramesh ;
Mathur, Manu ;
Raychowdhury, Indrakshi .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (05)
[7]  
Kaplan DB, 2017, Arxiv, DOI arXiv:1709.08250
[8]   Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity [J].
Babbush, Ryan ;
Gidney, Craig ;
Berry, Dominic W. ;
Wiebe, Nathan ;
McClean, Jarrod ;
Paler, Alexandra ;
Fowler, Austin ;
Neven, Hartmut .
PHYSICAL REVIEW X, 2018, 8 (04)
[9]   Exponentially more precise quantum simulation of fermions in the configuration interaction representation [J].
Babbush, Ryan ;
Berry, Dominic W. ;
Sanders, Yuval R. ;
Kivlichan, Ian D. ;
Scherer, Artur ;
Wei, Annie Y. ;
Love, Peter J. ;
Aspuru-Guzik, Alan .
QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (01)
[10]   Exponentially more precise quantum simulation of fermions in second quantization [J].
Babbush, Ryan ;
Berry, Dominic W. ;
Kivlichan, Ian D. ;
Wei, Annie Y. ;
Love, Peter J. ;
Aspuru-Guzik, Alan .
NEW JOURNAL OF PHYSICS, 2016, 18