Quantum states generation and manipulation in a programmable silicon-photonic four-qubit system with high-fidelity and purity

被引:2
作者
Lee, Jong-Moo [1 ]
Park, Jiho [1 ]
Bang, Jeongho [1 ]
Sohn, Young-Ik [2 ]
Baldazzi, Alessio [3 ]
Sanna, Matteo [3 ]
Azzini, Stefano [3 ]
Pavesi, Lorenzo [3 ]
机构
[1] ETRI, 218 Gajeong Ro, Daejeon 34129, South Korea
[2] Korea Adv Inst Sci & Technol, 291 Daehak Ro, Daejeon 34141, South Korea
[3] Univ Trento, Dept Phys, via Sommar 14, I-38123 Trento, Italy
基金
欧盟地平线“2020”;
关键词
PAIR; ENTANGLEMENT;
D O I
10.1063/5.0207714
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a programmable silicon photonic four-qubit integrated circuit for the generation and manipulation of diverse quantum states. The silicon photonic chip integrates photon-pair sources, pump-reducing filters, wavelength-division-multiplexing filters, Mach-Zehnder interferometer switches, and single-qubit arbitrary gates, enabling versatile state preparation and tomography. We measure Hong-Ou-Mandel interference with an impressive 98% visibility using four-photon coincidence, laying the foundation for high-purity qubits. Our analysis involves estimating the fidelity and purity of distinct quantum states through maximum-likelihood estimation applied to tomographic measurements. In our experimental results, we showcase the following achievements: a heralded single qubit achieving 98.2% fidelity and 98.3% purity, a Bell state reaching 95.2% fidelity and 94.8% purity, and a four-qubit system with two simultaneous Bell states exhibiting 87.4% fidelity and 84.6% purity. Finally, a four-qubit Greenberger-Horne-Zeilinger (GHZ) state demonstrates 85.4% fidelity and 81.7% purity. In addition, we certify the entanglement of the four-photon GHZ state through Bell's inequality violations and a negative entanglement witness. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
引用
收藏
页数:13
相关论文
共 45 条
[1]   Programmable four-photon graph states on a silicon chip [J].
Adcock, Jeremy C. ;
Vigliar, Caterina ;
Santagati, Raffaele ;
Silverstone, Joshua W. ;
Thompson, Mark G. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[2]  
Alexander K., 2024, arXiv
[3]  
Altepeter JB, 2004, LECT NOTES PHYS, V649, P113
[4]   Very-large-scale integrated quantum graph photonics [J].
Bao, Jueming ;
Fu, Zhaorong ;
Pramanik, Tanumoy ;
Mao, Jun ;
Chi, Yulin ;
Cao, Yingkang ;
Zhai, Chonghao ;
Mao, Yifei ;
Dai, Tianxiang ;
Chen, Xiaojiong ;
Jia, Xinyu ;
Zhao, Leshi ;
Zheng, Yun ;
Tang, Bo ;
Li, Zhihua ;
Luo, Jun ;
Wang, Wenwu ;
Yang, Yan ;
Peng, Yingying ;
Liu, Dajian ;
Dai, Daoxin ;
He, Qiongyi ;
Muthali, Alif Laila ;
Oxenlowe, Leif K. ;
Vigliar, Caterina ;
Paesani, Stefano ;
Hou, Huili ;
Santagati, Raffaele ;
Silverstone, Joshua W. ;
Laing, Anthony ;
Thompson, Mark G. ;
O'Brien, Jeremy L. ;
Ding, Yunhong ;
Gong, Qihuang ;
Wang, Jianwei .
NATURE PHOTONICS, 2023, 17 (07) :573-+
[5]   Fusion-based quantum computation [J].
Bartolucci, Sara ;
Birchall, Patrick ;
Bombin, Hector ;
Cable, Hugo ;
Dawson, Chris ;
Gimeno-Segovia, Mercedes ;
Johnston, Eric ;
Kieling, Konrad ;
Nickerson, Naomi ;
Pant, Mihir ;
Pastawski, Fernando ;
Rudolph, Terry ;
Sparrow, Chris .
NATURE COMMUNICATIONS, 2023, 14 (01)
[6]  
Bell J.S., 1964, Physics, V1, P195, DOI [DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
[7]  
Bombin H., 2021, arXiv
[8]   Resource-efficient linear optical quantum computation [J].
Browne, DE ;
Rudolph, T .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[9]   Entanglement witnesses: construction, analysis and classification [J].
Chruscinski, Dariusz ;
Sarbicki, Gniewomir .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (48)
[10]   Quantum tomography [J].
D'Ariano, GM ;
Paris, MGA ;
Sacchi, MF .
ADVANCES IN IMAGING AND ELECTRON PHYSICS, VOL 128, 2003, 128 :205-308