Optical design and development of an underwater dual-channel microlens array integral field snapshot hyperspectral imager

被引:1
作者
Lu, Fengqin [1 ,2 ,3 ]
Ma, Jun [1 ,3 ]
Su, Kun [1 ,3 ]
Xue, Qingsheng [1 ,3 ]
Miao, Qinxuan [1 ,3 ]
Cao, Diansheng [1 ,3 ]
机构
[1] Ocean Univ China, Coll Phys & Optoelect Engn, Dept Informat Sci & Engn, Qingdao 266100, Shandong, Peoples R China
[2] Ocean Univ China, Basic Teaching Ctr, Qingdao 266100, Peoples R China
[3] Minist Educ, Engn Res Ctr Adv Marine Phys Instruments & Equipm, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
ATMOSPHERIC CORRECTION; IMAGING-SYSTEM; OCEAN; CLASSIFICATION; COMPACT;
D O I
10.1364/AO.528277
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Compared to push-scan hyperspectral imagers, snapshot hyperspectral imagers offer an advantage by minimizing sensitivity to attitude jitter in underwater mobile platforms. Here we present the optical design and development of an underwater microlens array integral field hyperspectral imager. The system comprises a panchromatic imaging channel with a high spatial resolution and a spectral imaging channel with a lower spatial resolution. Through the fusion of high-resolution panchromatic images and low-resolution spectral images, we achieve high spatial resolution hyperspectral images. Both the panchromatic imaging channel and the spectral imaging channel share a common front objective, featuring a 25 mm focal length and a wide 36 degrees field of view angle. Utilizing prism dispersion, the spectral imaging system spans a band range from 465 to 700 nm with a spectral resolution of less than 10 nm. Specialized algorithms for spectral image reconstruction and image fusion have been developed. The experimental results across diverse scenes confirm the exemplary spectral imaging performance of the system, positioning it as a robust solution for underwater snapshot hyperspectral imaging. (c) 2024 Optica Publishing Group. All rights, including for text and data mining (TDM), Artificial Intelligence (AI) training, and similar technologies, are reserved.
引用
收藏
页码:5768 / 5777
页数:10
相关论文
共 36 条
  • [1] Ali I., 2023, Comput. Syst. Sci. Eng., V46, P303, DOI [10.32604/csse.2023.034374, DOI 10.32604/CSSE.2023.034374]
  • [2] Underwater hyperspectral imaging system with dual-scanning mode
    Bai, Haoxuan
    Xue, Qingsheng
    Hao, Xijie
    Li, Hui
    Huang, Liyu
    Li, Chang
    Yang, Jingyao
    [J]. APPLIED OPTICS, 2022, 61 (15) : 4226 - 4237
  • [3] Characterization of radiance from the ocean surface by hyperspectral imaging
    Carrizo, Carlos
    Gilerson, Alexander
    Foster, Robert
    Golovin, Andrii
    El-Habashi, Ahmed
    [J]. OPTICS EXPRESS, 2019, 27 (02) : 1750 - 1768
  • [4] Snapshot hyperspectral light field imaging using image mapping spectrometry
    Cui, Qi
    Park, Jongchan
    Smith, R. Theodore
    Gao, Liang
    [J]. OPTICS LETTERS, 2020, 45 (03) : 772 - 775
  • [5] Underwater Hyperspectral Imaging Using a Stationary Platform in the Trans-Atlantic Geotraverse Hydrothermal Field
    Dumke, Ines
    Ludvigsen, Martin
    Ellefmo, Steinar L.
    Soreide, Fredrik
    Johnsen, Geir
    Murton, Bramley J.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (05): : 2947 - 2962
  • [6] Diffraction-limited integral-field spectroscopy for extreme adaptive optics systems with the multicore fiber-fed integral-field unit
    Haffert, Sebastiaan Y.
    Harris, Robert J.
    Zanutta, Alessio
    Pike, Fraser A.
    Bianco, Andrea
    Redaelli, Eduardo
    Benoit, Aurelien
    MacLachlan, David G.
    Ross, Calum A.
    Gris-Sanchez, Itandehui
    Trappen, Mareike D.
    Xu, Yilin
    Blaicher, Matthias
    Maier, Pascal
    Riva, Giulio
    Sinquin, Baptiste
    Kulcsar, Caroline
    Bharmal, Nazim Ali
    Gendron, Eric
    Staykov, Lazar
    Morris, Tim J.
    Barboza, Santiago
    Muench, Norbert
    Bardou, Lisa
    Prengere, Leonard
    Raynaud, Henri-Francois
    Hottinger, Phillip
    Anagnos, Theodoros
    Osborn, James
    Koos, Christian
    Thomson, Robert R.
    Birks, Tim A.
    Snellen, Ignas A. G.
    Keller, Christoph U.
    [J]. JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2020, 6 (04)
  • [7] Atmospheric correction over the ocean for hyperspectral radiometers using multi-angle polarimetric retrievals
    Hannadige, Neranga K.
    Zhai, Peng-Wang
    Gao, Meng
    Franz, Bryan A.
    Hu, Yongxiang
    Knobelspiesse, Kirk
    Werdell, P. Jeremy
    Ibrahim, Amir
    Cairns, Brian
    Hasekamp, Otto P.
    [J]. OPTICS EXPRESS, 2021, 29 (03): : 4504 - 4522
  • [8] Development and performance validation of a low-cost algorithms-based hyperspectral imaging system for radiodermatitis assessment
    Hao, Shicheng
    Xiong, Ying
    Guo, Sisi
    Gao, Jing
    Chen, Xiaotong
    Zhang, Ruoyu
    Liu, Lihui
    Wang, Jianfeng
    [J]. BIOMEDICAL OPTICS EXPRESS, 2023, 14 (09) : 4990 - 5004
  • [9] Ultra-compact snapshot spectral light-field imaging
    Hua, Xia
    Wang, Yujie
    Wang, Shuming
    Zou, Xiujuan
    Zhou, You
    Li, Lin
    Yan, Feng
    Cao, Xun
    Xiao, Shumin
    Tsai, Din Ping
    Han, Jiecai
    Wang, Zhenlin
    Zhu, Shining
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [10] Atmospheric correction for hyperspectral ocean color retrieval with application to the Hyperspectral Imager for the Coastal Ocean (HICO)
    Ibrahim, Amir
    Franz, Bryan
    Ahmad, Ziauddin
    Healy, Richard
    Knobelspiesse, Kirk
    Gao, Bo-Cai
    Proctor, Chris
    Zhai, Peng-Wang
    [J]. REMOTE SENSING OF ENVIRONMENT, 2018, 204 : 60 - 75