Three-dimensional solitons in fractional nonlinear Schrodinger equation with exponential saturating nonlinearity

被引:4
作者
Lashkin, Volodymyr M. [1 ,2 ]
Cheremnykh, Oleg K. [2 ]
机构
[1] Inst Nucl Res, Pr Nauki 47, Kiev, Ukraine
[2] Space Res Inst, Pr Glushkova 40 K4-1, UA-03187 Kiev, Ukraine
关键词
Fractional nonlinear Schrodinger equation; Three-dimensional soliton; Saturating nonlinearity; Modulational instability; ITERATION METHOD; TURBULENCE; COLLAPSE;
D O I
10.1016/j.chaos.2024.115254
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the fractional three-dimensional (3D) nonlinear Schrodinger equation with exponential saturating nonlinearity. In the case of the Levy index alpha = 1 . 9 , this equation can be considered as a model equation to describe strong Langmuir plasma turbulence. The modulation instability of a plane wave is studied, the regions of instability depending on the Levy index, and the corresponding instability growth rates are determined. Numerical solutions in the form of 3D fundamental soliton (ground state) are obtained for different values of the Levy index. It was shown that in a certain range of soliton parameters it is stable even in the presence of a sufficiently strong initial random disturbance, and the self-cleaning of the soliton from such initial noise was demonstrated.
引用
收藏
页数:6
相关论文
共 50 条
[31]   Interactions of three-dimensional solitons in the cubic-quintic model [J].
Burlak, Gennadiy ;
Malomed, Boris A. .
CHAOS, 2018, 28 (06)
[32]   Mixed Higher-Order Rogue Waves and Solitons for the Coupled Modified Nonlinear Schrodinger Equation [J].
Xu, Tao ;
He, Guoliang ;
Wang, Ming ;
Wang, Yanqing .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (01)
[33]   Self-consistent model of the plasma staircase and nonlinear Schrodinger equation with subquadratic power nonlinearity [J].
Milovanov, Alexander, V ;
Rasmussen, Jens Juul ;
Dif-Pradalier, Guilhem .
PHYSICAL REVIEW E, 2021, 103 (05)
[34]   Dissipative solitons of the nonlinear fractional Schro•dinger equation with PT-symmetric potential [J].
Wang, Ru-Ru ;
Wang, Yue-Yue ;
Dai, Chao-Qing .
OPTIK, 2022, 254
[35]   Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrodinger equation [J].
Duo, Siwei ;
Zhang, Yanzhi .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (11) :2257-2271
[36]   Dynamics of Plane Waves in the Fractional Nonlinear Schrodinger Equation with Long-Range Dispersion [J].
Duo, Siwei ;
Lakoba, Taras I. ;
Zhang, Yanzhi .
SYMMETRY-BASEL, 2021, 13 (08)
[37]   Three-dimensional topological solitons in PT-symmetric optical lattices [J].
Kartashov, Yaroslav V. ;
Hang, Chao ;
Huang, Guoxiang ;
Torner, Lluis .
OPTICA, 2016, 3 (10) :1048-1055
[38]   An efficient energy-preserving method for the two-dimensional fractional Schrodinger equation [J].
Fu, Yayun ;
Xu, Zhuangzhi ;
Cai, Wenjun ;
Wang, Yushun .
APPLIED NUMERICAL MATHEMATICS, 2021, 165 :232-247
[39]   On the theory of three-dimensional multihump solitons in active-dissipative media [J].
E. A. Demekhin ;
E. N. Kalaidin ;
S. M. Shapar ;
V. S. Shelistov .
Fluid Dynamics, 2009, 44 :328-332
[40]   On the theory of three-dimensional multihump solitons in active-dissipative media [J].
Demekhin, E. A. ;
Kalaidin, E. N. ;
Shapar, S. M. ;
Shelistov, V. S. .
FLUID DYNAMICS, 2009, 44 (02) :328-332