Double-classifier adversarial learning for fault diagnosis of rotating machinery considering cross domains

被引:4
作者
Jin, Tongtong [1 ]
Chen, Chuanhai [2 ]
Guo, Jinyan [2 ]
Liu, Zhifeng [2 ]
Zhang, Yueze [2 ]
机构
[1] Jilin Univ, Transportat Coll, Changchun 130025, Jilin, Peoples R China
[2] Jilin Univ, Sch Mech & Aerosp Engn, Key Lab CNC Equipment Reliabil, Minist Educ, Changchun 130025, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; Fault diagnosis; Cross domain; Adversarial training; Conditional entropy; NEURAL-NETWORK;
D O I
10.1016/j.ymssp.2024.111490
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Deep learning methods have been demonstrated remarkable success in machine fault diagnosis under the constraint of identical distribution between training datasets and test datasets. However, achieving such conditions in practical scenarios remains challenging. Variations in working conditions lead to distinct distributions in fault data, while acquiring sufficient labeled fault data is often difficult. To address these problems, a double-classifiers adversarial learning network (DC-net) method is proposed. Firstly, a specialized network structure is designed, containing two classifiers, which align the source and target domains through the utilization of an adversarial training strategy. Secondly, conditional entropy and locally Lipschitz term are integrated into the loss function to force decision boundaries away from data-dense areas, precisely classifying different fault modes. State-of-the-art results are achieved across four cases, with test accuracy exceeding 80% in most instances. Notably, in single-source bearing fault diagnosis, the average test accuracy reaches 98.89%. These experimental results reveal the reliability and generalizability of the constructed model.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Fault detection and diagnosis of rotating machinery
    Loparo, KA
    Adams, ML
    Lin, W
    Abdel-Magied, MF
    Afshari, N
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2000, 47 (05) : 1005 - 1014
  • [42] TSViT: A Time Series Vision Transformer for Fault Diagnosis of Rotating Machinery
    Zhang, Shouhua
    Zhou, Jiehan
    Ma, Xue
    Pirttikangas, Susanna
    Yang, Chunsheng
    APPLIED SCIENCES-BASEL, 2024, 14 (23):
  • [43] Fault Diagnosis of Rotating Machinery based on the Minutiae Algorithm
    Mogal, Shyam
    Deshmukh, Sudhanshu
    Talekar, Sopan
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2023, 13 (05) : 11649 - 11654
  • [44] Rotating Machinery Fault Diagnosis Through a Transformer Convolution Network Subjected to Transfer Learning
    Pei, Xinglong
    Zheng, Xiaoyang
    Wu, Jinliang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [45] A Novel Rotating Machinery Fault Diagnosis System Using Ensemble Learning Capsule Autoencoder
    Chen, Hao
    Wang, Xian-Bo
    Yang, Zhi-Xin
    IEEE SENSORS JOURNAL, 2024, 24 (01) : 1018 - 1027
  • [46] Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning
    Li, Chuan
    Sanchez, Rene-Vinicio
    Zurita, Grover
    Cerrada, Mariela
    Cabrera, Diego
    SENSORS, 2016, 16 (06)
  • [47] Artificial intelligence for fault diagnosis of rotating machinery: A review
    Liu, Ruonan
    Yang, Boyuan
    Zio, Enrico
    Chen, Xuefeng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 108 : 33 - 47
  • [48] Fault diagnosis of rotating machinery based on DVMD denoising
    Yin X.-L.
    Mu Z.-L.
    Wang Y.-Q.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2022, 39 (07): : 1324 - 1334
  • [49] Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
    Li, Xiang
    Zhang, Wei
    Ding, Qian
    Sun, Jian-Qiao
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (02) : 433 - 452
  • [50] Machinery fault diagnosis with imbalanced data using deep generative adversarial networks
    Zhang, Wei
    Li, Xiang
    Jia, Xiao-Dong
    Ma, Hui
    Luo, Zhong
    Li, Xu
    MEASUREMENT, 2020, 152