Proteomic profiling of tumor microenvironment and prognosis risk prediction in stage I lung adenocarcinoma

被引:2
作者
Lu, Yueh-Feng [1 ,2 ,3 ]
Chang, Ya-Hsuan [4 ]
Chen, Yi-Ju [5 ]
Hsieh, Min-Shu [6 ,7 ]
Lin, Mong-Wei [5 ]
Hsu, Hsao-Hsun [7 ,8 ]
Han, Chia-Li [9 ]
Chen, Yu-Ju [5 ]
Yu, Sung-Liang [10 ]
Chen, Jin-Shing [1 ,2 ,7 ,8 ]
Chen, Hsuan-Yu [1 ,2 ,11 ,12 ,13 ]
机构
[1] Natl Taiwan Univ, PhD Program Translat Med, Taipei, Taiwan
[2] Acad Sinica, Taipei, Taiwan
[3] Far Eastern Mem Hosp, Dept Radiol, Div Radiat Oncol, New Taipei City, Taiwan
[4] Natl Hlth Res Inst, Inst Mol & Genom Med, Zhunan, Taiwan
[5] Acad Sinica, Inst Chem, Taipei, Taiwan
[6] Natl Taiwan Univ Hosp, Coll Med, Dept Pathol, Taipei, Taiwan
[7] Natl Taiwan Univ, Coll Med, Taipei, Taiwan
[8] Natl Taiwan Univ Hosp, Dept Surg, Taipei, Taiwan
[9] Taipei Med Univ, Coll Pharm, Master Program Clin Genom & Prote, Taipei, Taiwan
[10] Natl Taiwan Univ, Dept Clin Lab Sci & Med Biotechnol, Taipei, Taiwan
[11] Natl Chung Hsing Univ, Doctoral Program Microbial Genom, Taichung, Taiwan
[12] Kaohsiung Med Univ, Ctr Canc Res, Kaohsiung, Taiwan
[13] Acad Sinica, Inst Stat Sci, Taipei, Taiwan
关键词
Lung adenocarcinoma; Mass spectrometry; Proteomic; Tumor microenvironment; Prognostic biomarker; ADJUVANT CHEMOTHERAPY; COMPUTATIONAL PLATFORM; CANCER; EXPRESSION; SURVIVAL; ANGIOGENESIS; RECURRENCE; ACTIVATION; MIGRATION; TEGAFUR;
D O I
10.1016/j.lungcan.2024.107791
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Objectives: With the increasing popularity of CT screening, more cases of early-stage lung cancer are being diagnosed. However, 24.5% of stage I non-small-cell lung cancer (NSCLC) patients still experience treatment failure post-surgery. Biomarkers to predict lung cancer patients at high risk of recurrence are needed. Materials and methods: We collected protein mass spectrometry data from the Taiwan Lung Cancer Moonshot Project and performed bioinformatics analysis on proteins with differential expressions between tumor and adjacent normal tissues in 74 stage I lung adenocarcinoma (LUAD) cases, aiming to explore the tumor microenvironment related prognostic biomarkers. Findings were further validated in 6 external cohorts. Results: The analysis of differentially expressed proteins revealed that the most enriched categories of diseases and biological functions were cellular movement, immune cell trafficking, and cancer. Utilizing proteomic profiling of the tumor microenvironment, we identified five prognostic biomarkers (ADAM10, MIF, TEK, THBS2, MAOA). We then developed a risk score model, which independently predicted recurrence-free survival and overall survival in stage I LUAD. Patients with high risk scores experienced worse recurrence-free survival (adjusted hazard ratio = 8.28, p < 0.001) and overall survival (adjusted hazard ratio = 6.88, p = 0.013). Findings had been also validated in the external cohorts. Conclusion: The risk score model derived from proteomic profiling of tumor microenvironment can be used to predict recurrence risk and prognosis of stage I LUAD.
引用
收藏
页数:10
相关论文
共 30 条
  • [21] Ectopic Activation of Germline and Placental Genes Identifies Aggressive Metastasis-Prone Lung Cancers
    Rousseaux, Sophie
    Debernardi, Alexandra
    Jacquiau, Baptiste
    Vitte, Anne-Laure
    Vesin, Aurelien
    Nagy-Mignotte, Helene
    Moro-Sibilot, Denis
    Brichon, Pierre-Yves
    Lantuejoul, Sylvie
    Hainaut, Pierre
    Laffaire, Julien
    de Reynies, Aurelien
    Beer, David G.
    Timsit, Jean-Francois
    Brambilla, Christian
    Brambilla, Elisabeth
    Khochbin, Saadi
    [J]. SCIENCE TRANSLATIONAL MEDICINE, 2013, 5 (186)
  • [22] Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
    Sung, Hyuna
    Ferlay, Jacques
    Siegel, Rebecca L.
    Laversanne, Mathieu
    Soerjomataram, Isabelle
    Jemal, Ahmedin
    Bray, Freddie
    [J]. CA-A CANCER JOURNAL FOR CLINICIANS, 2021, 71 (03) : 209 - 249
  • [23] Clinical Impact of Immune Microenvironment in Stage I Lung Adenocarcinoma: Tumor Interleukin-12 Receptor β2 (IL-12Rβ2), IL-7R, and Stromal FoxP3/CD3 Ratio Are Independent Predictors of Recurrence
    Suzuki, Kei
    Kadota, Kyuichi
    Sima, Camelia S.
    Nitadori, Jun-ichi
    Rusch, Valerie W.
    Travis, William D.
    Sadelain, Michel
    Adusumilli, Prasad S.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2013, 31 (04) : 490 - 498
  • [24] A 12-Gene Set Predicts Survival Benefits from Adjuvant Chemotherapy in Non-Small Cell Lung Cancer Patients
    Tang, Hao
    Xiao, Guanghua
    Behrens, Carmen
    Schiller, Joan
    Allen, Jeffrey
    Chow, Chi-Wan
    Suraokar, Milind
    Corvalan, Alejandro
    Mao, Jianhua
    White, Michael A.
    Wistuba, Ignacio I.
    Minna, John D.
    Xie, Yang
    [J]. CLINICAL CANCER RESEARCH, 2013, 19 (06) : 1577 - 1586
  • [25] The MaxQuant computational platform for mass spectrometry-based shotgun proteomics
    Tyanova, Stefka
    Temu, Tikira
    Cox, Juergen
    [J]. NATURE PROTOCOLS, 2016, 11 (12) : 2301 - 2319
  • [26] Tyanova S, 2016, NAT METHODS, V13, P731, DOI [10.1038/NMETH.3901, 10.1038/nmeth.3901]
  • [27] White ES, 2003, CLIN CANCER RES, V9, P853
  • [28] GAP: A graphical environment for matrix visualization and cluster analysis
    Wu, Han-Ming
    Tien, Yin-Jing
    Chen, Chun-houh
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (03) : 767 - 778
  • [29] Yang P, 2021, J THORAC ONCOL, V16, pS58
  • [30] ADAM10 Sheddase Activity is a Potential Lung-Cancer Biomarker
    Yoneyama, Toshie
    Gorry, Michael
    Sobo-Vujanovic, Andrea
    Lin, Yan
    Vujanovic, Lazar
    Gaither-Davis, Autumn
    Moss, Marcia L.
    Miller, Miles A.
    Griffith, Linda G.
    Lauffenburger, Douglas A.
    Stabile, Laura P.
    Herman, James
    Vujanovic, Nikola L.
    [J]. JOURNAL OF CANCER, 2018, 9 (14): : 2559 - 2570