Detailed analysis of a pure hydrogen-fueled dual-fuel engine in terms of performance and greenhouse gas emissions

被引:0
|
作者
Marasht, Mohammad Reza Salmani [1 ]
Jazayeri, Seyed Ali [2 ]
Ebrahimi, Mojtaba [1 ]
机构
[1] Islamic Azad Univ, Dept Mech Engn, Ayatollah Amoli Branch, Amol, Iran
[2] KN Toosi Univ Technol, Dept Mech Engn, Tehran, Iran
关键词
Greenhouse gas emissions; Dual-fuel engine; RCCI Engine; Natural gas; Hydrogen; COMPRESSION IGNITION COMBUSTION; DUTY DIESEL-ENGINE; RCCI COMBUSTION; NATURAL-GAS; LANDFILL GAS; SENSOR; ENERGY;
D O I
10.1016/j.aej.2024.08.086
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The current study seeks to greenhouse gas emissions reduction in an existing engine under dual-fuel combustion fueled with diesel fuel and natural gas due to great concerns about global warming. This simulation study focuses on the identification of areas prone to the formation of greenhouse gas emissions in engine cylinders. The simulation results of dual-fuel combustion confirmed that the possibility of incomplete combustion and the formation of greenhouse gas emissions in high levels are not far from expected. Therefore, an efficient combustion strategy along with replacing natural gas with hydrogen was considered. Only changing the combustion mode to reactivity-controlled compression ignition has led to the improvement of the natural gas burning rate and guarantees a 32 % reduction in unburned methane and 50 % carbon monoxide. To further reduce engine emissions, while changing the combustion mode, a part of natural gas replacement with hydrogen to the complete elimination of it was evaluated. Increasing the share of hydrogen energy in the intake air-natural gas mixture up to 54 % without exhaust gas recirculation does not lead to diesel knock. Moreover, improvement of engine load and efficiency can be achieved by up to 18 % and 6 %, respectively. Natural gas consumption can be reduced by up to 67 %. Meanwhile, the unburned methane and carbon dioxide mass, known as greenhouse gas emissions, can be reduced to less than 1 % and up to 50 %, respectively. Continued replacement of natural gas with hydrogen until its complete elimination guarantees a reduction of 92,000 cubic meters of natural gas per year in one engine cylinder. Although, the engine efficiency and load face a decrease of 0.8 % and 5.0 %, respectively; the amount of carbon dioxide can be decreased by about 4.5 times. Unburned methane, carbon monoxide and nitrogen oxides can be reduced to below the relevant EURO VI range while the amount of unburned hydrogen compared to the hydrogen entering the engine is about 0.5 %.
引用
收藏
页码:250 / 261
页数:12
相关论文
共 50 条
  • [21] Effect of gas composition on the performance and emissions of a dual-fuel diesel-natural gas engine at low load conditions
    Ulishney, Christopher J.
    Dumitrescu, Cosmin E.
    FUEL, 2022, 324
  • [22] Effect of adding oxygen to the intake air on a dual-fuel engine performance, emissions, and knock tendency
    Abdelaal, Mohsen M.
    Rabee, Basem A.
    Hegab, Abdelrahman H.
    ENERGY, 2013, 61 : 612 - 620
  • [23] Experimental study of engine performance and emissions for hydrogen diesel dual fuel engine with exhaust gas recirculation
    Nag, Sarthak
    Sharma, Priybrat
    Gupta, Arpan
    Dhar, Atul
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (23) : 12163 - 12175
  • [24] Performance and emissions of a novel high-pressure direct injection hydrogen dual-fuel engine
    Treacy, Mark
    Hadadpour, Ahmad
    Bai, Xue-Song
    Fatehi, Hesameddin
    FUEL, 2024, 376
  • [25] Hydrogen and CNG dual-fuel operation of a 6-Cylinder CI engine fueled by HVO and diesel: Emissions, efficiency, and combustion analyses
    Pinto, G. M.
    de Souza, T. A. Z.
    da Costa, R. B. R.
    Roque, L. F. A.
    Frez, G. V.
    Vidigal, L. P. V.
    Perez-Rangel, N. V.
    Coronado, C. J. R.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 111 : 407 - 432
  • [27] Emissions and performance of diesel-natural gas dual-fuel engine operated with stoichiometric mixture
    Vavra, Jiri
    Bortel, Ivan
    Takats, Michal
    Divis, Marcel
    FUEL, 2017, 208 : 722 - 733
  • [28] Numerical optimization of natural gas composition effects on dual-fuel diesel engine performance and emissions
    Rezapour, Mojtaba
    Deymi-Dashtebayaz, Mahdi
    ENERGY, 2025, 322
  • [30] Effects of the three dual-fuel strategies on performance and emissions of a biodiesel engine
    Kan, Xiang
    Wei, Liping
    Li, Xian
    Li, Han
    Zhou, Dezhi
    Yang, Wenming
    Wang, Chi-Hwa
    APPLIED ENERGY, 2020, 262