Forecasting and Power System Scheduling Based on Uncertainty Modeling and Optimization Strategies

被引:0
作者
Xue, Bai [1 ]
机构
[1] Xian Univ Sci & Technol, Xian, Shaanxi, Peoples R China
来源
PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND ARTIFICIAL INTELLIGENCE, PEAI 2024 | 2024年
关键词
Wind Energy Forecasting; Power System Scheduling; Uncertainty Modeling;
D O I
10.1145/3674225.3674286
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study proposes an innovative framework for wind energy forecasting and power system scheduling. Leveraging advanced statistical and machine learning models, coupled with uncertainty modeling using Monte Carlo simulations, the approach aims to enhance accuracy in wind energy predictions. Optimization strategies, encompassing multi-objective decision-making and real-time scheduling policies, are introduced to address variability and uncertainty in power systems. Diversified wind farm layouts and energy storage integration further mitigate uncertainty. The paper emphasizes the significance of a robust monitoring system with feedback mechanisms. Case studies illustrate the framework's practical application, demonstrating its efficacy in optimizing power systems amidst uncertain wind conditions.
引用
收藏
页码:340 / 344
页数:5
相关论文
共 11 条
[1]   Power system planning with increasing variable renewable energy: A review of optimization models [J].
Deng, Xu ;
Lv, Tao .
JOURNAL OF CLEANER PRODUCTION, 2020, 246
[2]   Review of Uncertainty Modeling for Optimal Operation of Integrated Energy System [J].
Fan, Hong ;
Wang, Cuiying ;
Liu, Lu ;
Li, Xuan .
FRONTIERS IN ENERGY RESEARCH, 2022, 9
[3]   Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications [J].
Hong, Ying-Yi ;
Apolinario, Gerard Francesco DG. .
ENERGIES, 2021, 14 (20)
[4]   Interval Optimization to Schedule a Multi-Energy System with Data-Driven PV Uncertainty Representation [J].
Kaffash, Mahtab ;
Ceusters, Glenn ;
Deconinck, Geert .
ENERGIES, 2021, 14 (10)
[5]  
Liu B., 2020, SUSTAIN CHEM PROCESS, P149
[6]   Energy scheduling for residential distributed energy resources with uncertainties using model-based predictive control [J].
Moradmand, Anahita ;
Dorostian, Mehrdad ;
Shafai, Bahram .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 132
[7]   Reinforcement-Learning-Based Energy Storage System Operation Strategies to Manage Wind Power Forecast Uncertainty [J].
Oh, Eunsung ;
Wang, Hanho .
IEEE ACCESS, 2020, 8 :20965-20976
[8]   Optimal control strategy of battery-integrated energy system considering load demand uncertainty [J].
Sanjari, M. J. ;
Karami, H. .
ENERGY, 2020, 210
[9]   The Second Wind Forecast Improvement Project (WFIP2): General Overview [J].
Shaw, William J. ;
Berg, Larry K. ;
Cline, Joel ;
Draxl, Caroline ;
Djalalova, Irina ;
Grimit, Eric P. ;
Lundquist, Julie K. ;
Marquis, Melinda ;
McCaa, Jim ;
Olson, Joseph B. ;
Sivaraman, Chitra ;
Sharp, Justin ;
Wilczak, James M. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2019, 100 (09) :1687-1699
[10]   A comprehensive review on deep learning approaches in wind forecasting applications [J].
Wu, Zhou ;
Luo, Gan ;
Yang, Zhile ;
Guo, Yuanjun ;
Li, Kang ;
Xue, Yusheng .
CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2022, 7 (02) :129-143