Long-time dynamics and singular limit of a shear beam model

被引:1
作者
Freitas, M. M. [1 ]
Almeida, D. S. [2 ]
Ramos, A. J. A. [3 ]
Dos Santos, M. J. [4 ]
Caljaro, R. Q. [5 ]
机构
[1] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
[2] Fed Univ Para, PhD Program Math, Augusto Correa St 01, BR-66075110 Belem, PA, Brazil
[3] Fed Univ Para, Fac Math, Raimundo Santana St, BR-68721000 Salinopolis, PA, Brazil
[4] Fed Univ Para, Fac Exact Sci & Technol, Manoel Abreu St,S-N, BR-68440000 Abaetetuba, PA, Brazil
[5] Fed Univ Para, Inst Exact & Nat Sci, Augusto Correa St 01, BR-66075110 Belem, PA, Brazil
关键词
Primary; 35B41; 35L53; Secondary; 74K10; 37L30; UPPER SEMICONTINUITY; ASYMPTOTIC LIMITS; EQUATION; STABILIZATION; ATTRACTORS; SYSTEM;
D O I
10.1007/s00208-024-02978-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is dedicated to studying the long-term dynamics of a beam model known as the Shear beam model (without rotary inertia). Unlike the classical Timoshenko beam model, which combines bending moment and shear force, the Shear beam model has only one wave speed without blow-up at lower frequencies. This distinction has a significant impact on the analysis of long-term dynamic properties. We prove that the Euler-Bernoulli beam equation can be obtained as a singular limit of the Shear beam model when the shear elasticity modulus kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} tends to infinity. By introducing a dissipative mechanism in the vertical displacement equation, we prove the existence of a smooth global attractor with finite fractal dimension. Finally, we demonstrate that the global attractor for the Shear beam model converges upper-semicontinuously to the global attractor for the Euler-Bernoulli equation as kappa ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa \rightarrow \infty $$\end{document}.
引用
收藏
页码:2149 / 2171
页数:23
相关论文
共 50 条
[41]   Long-time behaviour for a model of porous-medium equations with variable coefficients [J].
Ke, Tran Dinh ;
Wong, Ngai-Ching .
OPTIMIZATION, 2011, 60 (06) :709-724
[42]   LONG-TIME ASYMPTOTICS OF A LINEAR HIGHER-ORDER WATER WAVE MODEL [J].
Bautista, George J. ;
Fonseca, Oscar A. Sierra .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (12) :3409-3429
[43]   Cell cycle length and long-time behavior of an age-size model [J].
Pichor, Katarzyna ;
Rudnicki, Ryszard .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (10) :5797-5820
[44]   The singular limit dynamics of the phase-field equations [J].
Bonfoh, Ahmed .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2011, 190 (01) :105-144
[45]   Long-time behavior of nonclassical diffusion equations with memory on time-dependent spaces [J].
Zhang, Jiangwei ;
Xie, Zhe ;
Xie, Yongqin .
ASYMPTOTIC ANALYSIS, 2024, 137 (3-4) :267-289
[46]   Dynamics and singular limit for a swelling porous elastic soil model with fluid saturation and fractional delay [J].
Miranda, Luiz G. R. ;
Freitas, Mirelson M. ;
Dos Santos, Manoel J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 545 (02)
[47]   Singular dynamics of strongly damped beam equation [J].
Cwiszewski, Aleksander ;
Rybakowski, Krzysztof P. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (12) :3202-3233
[48]   Population dynamics under selection and mutation: Long-time behavior for differential equations in measure spaces [J].
Ackleh, Azmy S. ;
Cleveland, John ;
Thieme, Horst R. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (02) :1472-1505
[49]   Long-time dynamics of a regularized family of models for homogeneous incompressible two-phase flows [J].
Medjo, T. Tachim ;
Tone, C. ;
Tone, F. .
ASYMPTOTIC ANALYSIS, 2015, 94 (1-2) :125-160
[50]   Long-Time Behavior of Spatially and Size-Structured Population Dynamics with Delayed Birth Process [J].
Yan, Dongxue ;
Fu, Xianlong .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (03)