Long-time dynamics and singular limit of a shear beam model

被引:1
作者
Freitas, M. M. [1 ]
Almeida, D. S. [2 ]
Ramos, A. J. A. [3 ]
Dos Santos, M. J. [4 ]
Caljaro, R. Q. [5 ]
机构
[1] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
[2] Fed Univ Para, PhD Program Math, Augusto Correa St 01, BR-66075110 Belem, PA, Brazil
[3] Fed Univ Para, Fac Math, Raimundo Santana St, BR-68721000 Salinopolis, PA, Brazil
[4] Fed Univ Para, Fac Exact Sci & Technol, Manoel Abreu St,S-N, BR-68440000 Abaetetuba, PA, Brazil
[5] Fed Univ Para, Inst Exact & Nat Sci, Augusto Correa St 01, BR-66075110 Belem, PA, Brazil
关键词
Primary; 35B41; 35L53; Secondary; 74K10; 37L30; UPPER SEMICONTINUITY; ASYMPTOTIC LIMITS; EQUATION; STABILIZATION; ATTRACTORS; SYSTEM;
D O I
10.1007/s00208-024-02978-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is dedicated to studying the long-term dynamics of a beam model known as the Shear beam model (without rotary inertia). Unlike the classical Timoshenko beam model, which combines bending moment and shear force, the Shear beam model has only one wave speed without blow-up at lower frequencies. This distinction has a significant impact on the analysis of long-term dynamic properties. We prove that the Euler-Bernoulli beam equation can be obtained as a singular limit of the Shear beam model when the shear elasticity modulus kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} tends to infinity. By introducing a dissipative mechanism in the vertical displacement equation, we prove the existence of a smooth global attractor with finite fractal dimension. Finally, we demonstrate that the global attractor for the Shear beam model converges upper-semicontinuously to the global attractor for the Euler-Bernoulli equation as kappa ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa \rightarrow \infty $$\end{document}.
引用
收藏
页码:2149 / 2171
页数:23
相关论文
共 50 条
[31]   Long-time dynamics of N-dimensional structure equations with thermal memory [J].
Wang, Danxia ;
Zhang, Jianwen .
BOUNDARY VALUE PROBLEMS, 2017,
[32]   LONG TIME DYNAMICS OF A MODEL OF ELECTROCONVECTION [J].
Abdo, Elie ;
Ignatova, Mihaela .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (08) :5849-5875
[33]   Existence of weak solutions and long-time asymptotics for hydrodynamic model of swarming [J].
Chaudhuri, Nilasis ;
Choi, Young-Pil ;
Tse, Oliver ;
Zatorska, Ewelina .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (02)
[34]   On the long-time behavior of the continuous and discrete solutions of a nonlocal Cahn-Hilliard type inpainting model [J].
Jiang, Dandan ;
Azaiez, Mejdi ;
Miranville, Alain ;
Xu, Chuanju ;
Yao, Hui .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 225 :461-479
[35]   Analysis of long-time solution of chemotactic model with indirect signal consumption in three-dimensional case [J].
Hu, Qiaoling .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) :3758-3782
[36]   On the long-time persistence of hydrodynamic memory [J].
Villegas Diaz, Miguel .
EUROPEAN PHYSICAL JOURNAL E, 2021, 44 (11)
[37]   Long-Time Stabilization of Solutions to a Nonautonomous Semilinear Viscoelastic Equation [J].
Yassine, Hassan ;
Abbas, Ali .
APPLIED MATHEMATICS AND OPTIMIZATION, 2016, 73 (02) :251-269
[38]   Long-time dynamics for a fractional piezoelectric system with magnetic effects and Fourier's law [J].
Freitas, M. M. ;
Ramos, A. J. A. ;
Ozer, A. O. ;
Almeida Junior, D. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 280 :891-927
[39]   Long-Time Behavior for Second Order Lattice Dynamical Systems [J].
Abdallah, Ahmed Y. .
ACTA APPLICANDAE MATHEMATICAE, 2009, 106 (01) :47-59
[40]   Approximation of the long-time dynamics of the dynamical system generated by the Ericksen-Leslie equations [J].
Medjo, T. Tachim ;
Tone, C. ;
Tone, F. .
ASYMPTOTIC ANALYSIS, 2025, 144 (01) :1081-1104