Long-time dynamics and singular limit of a shear beam model

被引:1
作者
Freitas, M. M. [1 ]
Almeida, D. S. [2 ]
Ramos, A. J. A. [3 ]
Dos Santos, M. J. [4 ]
Caljaro, R. Q. [5 ]
机构
[1] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
[2] Fed Univ Para, PhD Program Math, Augusto Correa St 01, BR-66075110 Belem, PA, Brazil
[3] Fed Univ Para, Fac Math, Raimundo Santana St, BR-68721000 Salinopolis, PA, Brazil
[4] Fed Univ Para, Fac Exact Sci & Technol, Manoel Abreu St,S-N, BR-68440000 Abaetetuba, PA, Brazil
[5] Fed Univ Para, Inst Exact & Nat Sci, Augusto Correa St 01, BR-66075110 Belem, PA, Brazil
关键词
Primary; 35B41; 35L53; Secondary; 74K10; 37L30; UPPER SEMICONTINUITY; ASYMPTOTIC LIMITS; EQUATION; STABILIZATION; ATTRACTORS; SYSTEM;
D O I
10.1007/s00208-024-02978-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is dedicated to studying the long-term dynamics of a beam model known as the Shear beam model (without rotary inertia). Unlike the classical Timoshenko beam model, which combines bending moment and shear force, the Shear beam model has only one wave speed without blow-up at lower frequencies. This distinction has a significant impact on the analysis of long-term dynamic properties. We prove that the Euler-Bernoulli beam equation can be obtained as a singular limit of the Shear beam model when the shear elasticity modulus kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} tends to infinity. By introducing a dissipative mechanism in the vertical displacement equation, we prove the existence of a smooth global attractor with finite fractal dimension. Finally, we demonstrate that the global attractor for the Shear beam model converges upper-semicontinuously to the global attractor for the Euler-Bernoulli equation as kappa ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa \rightarrow \infty $$\end{document}.
引用
收藏
页码:2149 / 2171
页数:23
相关论文
共 50 条
[21]   LONG-TIME DYNAMICS IN PLATE MODELS WITH STRONG NONLINEAR DAMPING [J].
Chueshov, Igor ;
Kolbasin, Stanislav .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (02) :659-674
[22]   Well-Posedness and Long-Time Dynamics of a Water-Waves Model With Time-Varying Boundary Delay [J].
Bautista, George J. ;
Capistrano-Filho, Roberto de A. ;
Chentouf, Boumediene ;
Fonseca, Oscar Sierra .
ASYMPTOTIC ANALYSIS, 2025,
[23]   LONG-TIME DYNAMICS OF A COUPLED CAHN-HILLIARD-BOUSSINESQ SYSTEM [J].
Zhao, Kun .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2012, 10 (03) :735-749
[24]   The Long-Time Dynamics of Two Hydrodynamically-Coupled Swimming Cells [J].
Michelin, Sebastien ;
Lauga, Eric .
BULLETIN OF MATHEMATICAL BIOLOGY, 2010, 72 (04) :973-1005
[26]   Long-time behavior of an angiogenesis model with flux at the tumor boundary [J].
Cieslak, Tomasz ;
Morales-Rodrigo, Cristian .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (06) :1625-1641
[27]   Long-time dynamical behavior for a piezoelectric system with magnetic effect and nonlinear dampings [J].
Liu, Gongwei ;
Wang, Mengru ;
Ding, Pengyan .
ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (09) :3397-3421
[28]   Long-time dynamics of the Cahn-Hilliard equation with kinetic rate dependent dynamic boundary conditions [J].
Garcke, Harald ;
Knopf, Patrik ;
Yayla, Sema .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 215
[29]   Vanishing viscosity limit and long-time behavior for 2D quasi geostrophic equations [J].
Berselli, LC .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2002, 51 (04) :905-930
[30]   Long-time dynamics of the Kirchhoff equation with variable coefficient rotational inertia and memory [J].
Lv, Penghui ;
Lu, Jingxin ;
Lin, Guoguang .
RESULTS IN APPLIED MATHEMATICS, 2025, 26