Long-time dynamics and singular limit of a shear beam model

被引:0
作者
Freitas, M. M. [1 ]
Almeida, D. S. [2 ]
Ramos, A. J. A. [3 ]
Dos Santos, M. J. [4 ]
Caljaro, R. Q. [5 ]
机构
[1] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
[2] Fed Univ Para, PhD Program Math, Augusto Correa St 01, BR-66075110 Belem, PA, Brazil
[3] Fed Univ Para, Fac Math, Raimundo Santana St, BR-68721000 Salinopolis, PA, Brazil
[4] Fed Univ Para, Fac Exact Sci & Technol, Manoel Abreu St,S-N, BR-68440000 Abaetetuba, PA, Brazil
[5] Fed Univ Para, Inst Exact & Nat Sci, Augusto Correa St 01, BR-66075110 Belem, PA, Brazil
关键词
Primary; 35B41; 35L53; Secondary; 74K10; 37L30; UPPER SEMICONTINUITY; ASYMPTOTIC LIMITS; EQUATION; STABILIZATION; ATTRACTORS; SYSTEM;
D O I
10.1007/s00208-024-02978-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is dedicated to studying the long-term dynamics of a beam model known as the Shear beam model (without rotary inertia). Unlike the classical Timoshenko beam model, which combines bending moment and shear force, the Shear beam model has only one wave speed without blow-up at lower frequencies. This distinction has a significant impact on the analysis of long-term dynamic properties. We prove that the Euler-Bernoulli beam equation can be obtained as a singular limit of the Shear beam model when the shear elasticity modulus kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} tends to infinity. By introducing a dissipative mechanism in the vertical displacement equation, we prove the existence of a smooth global attractor with finite fractal dimension. Finally, we demonstrate that the global attractor for the Shear beam model converges upper-semicontinuously to the global attractor for the Euler-Bernoulli equation as kappa ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa \rightarrow \infty $$\end{document}.
引用
收藏
页码:2149 / 2171
页数:23
相关论文
共 50 条
  • [1] SINGULAR LIMIT AND LONG-TIME DYNAMICS OF BRESSE SYSTEMS
    Ma, To Fu
    Monteiro, Rodrigo Nunes
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (04) : 2468 - 2495
  • [2] Long-time dynamics for a Cahn-Hilliard tumor growth model with chemotaxis
    Garcke, Harald
    Yayla, Sema
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (04):
  • [3] A long-time limit for world subway networks
    Roth, Camille
    Kang, Soong Moon
    Batty, Michael
    Barthelemy, Marc
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2012, 9 (75) : 2540 - 2550
  • [4] LONG-TIME DYNAMICS OF A DIFFUSIVE EPIDEMIC MODEL WITH FREE BOUNDARIES
    Wang, Rong
    Du, Yihong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (04): : 2201 - 2238
  • [5] Long-time dynamics of ternary mixtures with localized dissipation
    Freitas, M. M.
    Caljaro, R. Q.
    Ramos, A. J. A.
    Rodrigues, H. C. M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (12)
  • [6] Long-time dynamics of a nonlinear Timoshenko beam with discrete delay term and nonlinear damping
    Dos Santos, M. J.
    Freitas, M. M.
    Ramos, A. J. A.
    Almeida Junior, D. S.
    Rodrigues, L. R. S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (06)
  • [7] Long-time behavior of coupled beam models with fractional energy damping
    Lv, Penghui
    Cun, Yuxiao
    Lin, Guoguang
    BOUNDARY VALUE PROBLEMS, 2025, 2025 (01):
  • [8] A chemotaxis system with singular sensitivity for burglaries in the higher-dimensional settings: generalized solvability and long-time behavior
    Li, Bin
    Xie, Li
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (02)
  • [9] Long-time dynamics of a stochastic multimolecule oscillatory reaction model with Poisson jumps
    Wei, Yongchang
    Yin, Zongbin
    AIMS MATHEMATICS, 2021, 7 (02): : 2956 - 2972
  • [10] Long-time dynamics of a von Karman equation with time delay
    Park, Sun Hye
    APPLIED MATHEMATICS LETTERS, 2018, 75 : 128 - 134