Social Media as a Sensor: Analyzing Twitter Data for Breast Cancer Medication Effects Using Natural Language Processing

被引:1
作者
Kobara, Seibi [1 ]
Rafiei, Alireza [1 ]
Nateghi, Masoud [1 ]
Bozkurt, Selen [1 ]
Kamaleswaran, Rishikesan [1 ]
Sarker, Abeed [1 ]
机构
[1] Emory Univ, 201 Dowman Dr, Atlanta, GA 30322 USA
来源
ARTIFICIAL INTELLIGENCE IN MEDICINE, PT I, AIME 2024 | 2024年 / 14844卷
关键词
Breast cancer; natural language processing; social media; TAMOXIFEN; ADHERENCE; MORTALITY;
D O I
10.1007/978-3-031-66538-7_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Breast cancer is a significant public health concern and is the leading cause of cancer-related deaths among women. Despite advances in breast cancer treatments, medication non-adherence remains a major problem. As electronic health records do not typically capture patient-reported outcomes that may reveal information about medication-related experiences, social media presents an attractive resource for enhancing our understanding of the patients' treatment experiences. In this paper, we developed natural language processing (NLP) based methodologies to study information posted by an automatically curated breast cancer cohort from social media. We employed a transformer-based classifier to identify breast cancer patients/survivors on X (Twitter) based on their self-reported information, and we collected longitudinal data from their profiles. We then designed a multi-layer rule-based model to develop a breast cancer therapy-associated side effect lexicon and detect patterns of medication usage and associated side effects among breast cancer patients. 1,454,637 posts were available from 583,962 unique users, of which 62,042 (10.6%) were detected as breast cancer members using our transformer-based model. 198 cohort members mentioned breast cancer medications, with tamoxifen as the most common. Our side effect lexicon identified well-known side effects of hormone and chemotherapy. Furthermore, it discovered a subjective feeling towards cancer and medications, which may suggest a pre-clinical phase of side effects or emotional distress. This analysis highlighted not only the utility of NLP techniques in unstructured social media data to identify self-reported breast cancer posts, medication usage patterns, and treatment side effects but also the richness of social data to answer such clinical questions.
引用
收藏
页码:345 / 354
页数:10
相关论文
共 17 条
[1]   Automatic Breast Cancer Cohort Detection from Social Media for Studying Factors Affecting Patient-Centered Outcomes [J].
Al-Garadi, Mohammed Ali ;
Yang, Yuan-Chi ;
Lakamana, Sahithi ;
Lin, Jie ;
Li, Sabrina ;
Xie, Angel ;
Hogg-Bremer, Whitney ;
Torres, Mylin ;
Banerjee, Imon ;
Sarker, Abeed .
ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2020), 2020, :100-110
[2]   Effect of screening and adjuvant therapy on mortality from breast cancer [J].
Berry, DA ;
Cronin, KA ;
Plevritis, SK ;
Fryback, DG ;
Clarke, L ;
Zelen, M ;
Mandelblatt, JS ;
Yakovlev, AY ;
Habbema, JDF ;
Feuer, EJ .
NEW ENGLAND JOURNAL OF MEDICINE, 2005, 353 (17) :1784-1792
[3]   Breast Cancer Statistics, 2022 [J].
Giaquinto, Angela N. ;
Sung, Hyuna ;
Miller, Kimberly D. ;
Kramer, Joan L. ;
Newman, Lisa A. ;
Minihan, Adair ;
Jemal, Ahmedin ;
Siegel, Rebecca L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2022, 72 (06) :524-541
[4]   Cancer statistics for African American/Black People 2022 [J].
Giaquinto, Angela N. ;
Miller, Kimberly D. ;
Tossas, Katherine Y. ;
Winn, Robert A. ;
Jemal, Ahmedin ;
Siegel, Rebecca L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2022, 72 (03) :202-229
[5]   Tyrosine kinase inhibitors in breast cancer (Review) [J].
Iancu, George ;
Serban, Dragos ;
Badiu, Cristinel Dumitru ;
Tanasescu, Ciprian ;
Tudosie, Mihai Silviu ;
Tudor, Corneliu ;
Costea, Daniel Ovidiu ;
Zgura, Anca ;
Iancu, Raluca ;
Vasile, Danut .
EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2022, 23 (02)
[6]   The role of tyrosine kinase inhibitors in the treatment of HER2+metastatic breast cancer [J].
Le Du, Fanny ;
Dieras, Veronqiue ;
Curigliano, Giuseppe .
EUROPEAN JOURNAL OF CANCER, 2021, 154 :175-189
[7]   Cohort study examining tamoxifen adherence and its relationship to mortality in women with breast cancer [J].
McCowan, C. ;
Shearer, J. ;
Donnan, P. T. ;
Dewar, J. A. ;
Crilly, M. ;
Thompson, A. M. ;
Fahey, T. P. .
BRITISH JOURNAL OF CANCER, 2008, 99 (11) :1763-1768
[8]   Cancer statistics for the US Hispanic/Latino population, 2021 [J].
Miller, Kimberly D. ;
Ortiz, Ana P. ;
Pinheiro, Paulo S. ;
Bandi, Priti ;
Minihan, Adair ;
Fuchs, Hannah E. ;
Tyson, Dinorah Martinez ;
Tortolero-Luna, Guillermo ;
Fedewa, Stacey A. ;
Jemal, Ahmedin M. ;
Siegel, Rebecca L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2021, 71 (06) :466-487
[9]   Effects of Screening and Systemic Adjuvant Therapy on ER-Specific US Breast Cancer Mortality [J].
Munoz, Diego ;
Near, Aimee M. ;
van Ravesteyn, Nicolien T. ;
Lee, Sandra J. ;
Schechter, Clyde B. ;
Alagoz, Oguzhan ;
Berry, Donald A. ;
Burnside, Elizabeth S. ;
Chang, Yaojen ;
Chisholm, Gary ;
de Koning, Harry J. ;
Ergun, Mehmet Ali ;
Heijnsdijk, Eveline A. M. ;
Huang, Hui ;
Stout, Natasha K. ;
Sprague, Brian L. ;
Trentham-Dietz, Amy ;
Mandelblatt, Jeanne S. ;
Plevritis, Sylvia K. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2014, 106 (11)
[10]   Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study [J].
Pearce, Alison ;
Haas, Marion ;
Viney, Rosalie ;
Pearson, Sallie-Anne ;
Haywood, Philip ;
Brown, Chris ;
Ward, Robyn .
PLOS ONE, 2017, 12 (10)