Stability and Convergence of a Randomized Model Predictive Control Strategy

被引:2
作者
Veldman, Daniel W. M. [1 ]
Borkowski, Alexandra [2 ]
Zuazua, Enrique [1 ,3 ,4 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Chair Dynam Control Machine Learning & Numer Alexa, Dept Math, D-91058 Erlangen, Germany
[2] Kings Coll London, Dept Math, London WC2R 2LS, England
[3] Fdn Deusto, Chair Computat Math, Bilbao 48007, Spain
[4] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
关键词
Numerical stability; Convergence; Stability criteria; Read only memory; Computational efficiency; Approximation algorithms; Vectors; Error estimates; model predictive control (MPC); random batch method (RBM); receding horizon control; stability; TIME;
D O I
10.1109/TAC.2024.3375253
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
RBM-MPC is a computationally efficient variant of model predictive control (MPC) in which the random batch method (RBM) is used to speed up the finite-horizon optimal control problems at each iteration. In this article, stability and convergence estimates are derived for RBM-MPC of unconstrained linear systems. The obtained estimates are validated in a numerical example that also shows a clear computational advantage of RBM-MPC.
引用
收藏
页码:6253 / 6260
页数:8
相关论文
共 18 条
[1]   CRANK-NICOLSON SCHEMES FOR OPTIMAL CONTROL PROBLEMS WITH EVOLUTION EQUATIONS [J].
Apel, Thomas ;
Flaig, Thomas G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (03) :1484-1512
[2]   DEEP LEARNING AS OPTIMAL CONTROL PROBLEMS: MODELS AND NUMERICAL METHODS [J].
Benning, Martin ;
Celledoni, Elena ;
Ehrhardt, Matthias J. ;
Owren, Brynjulf ;
Schonlieb, Carola-Bibiane .
JOURNAL OF COMPUTATIONAL DYNAMICS, 2019, 6 (02) :171-198
[3]   CONVERGENCE OF THE TIME-INVARIANT RICCATI DIFFERENTIAL-EQUATION AND LQ-PROBLEM - MECHANISMS OF ATTRACTION [J].
CALLIER, FM ;
WINKIN, J ;
WILLEMS, JL .
INTERNATIONAL JOURNAL OF CONTROL, 1994, 59 (04) :983-1000
[4]   A randomized operator splitting scheme inspired by stochastic optimization methods [J].
Eisenmann, Monika ;
Tony, Stillfjord .
NUMERISCHE MATHEMATIK, 2024, 156 (02) :435-461
[5]  
Esteve C, 2021, Arxiv, DOI arXiv:2008.02491
[6]  
Grune L, 2017, COMMUN CONTROL ENG, P1, DOI 10.1007/978-3-319-46024-6
[7]  
Herty M, 2007, NETW HETEROG MEDIA, V2, P81
[8]   Random Batch Methods (RBM) for interacting particle systems [J].
Jin, Shi ;
Li, Lei ;
Liu, Jian-Guo .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 400
[9]   Model predictive control with random batch methods for a guiding problem [J].
Ko, Dongnam ;
Zuazua, Enrique .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (08) :1569-1592
[10]   Model predictive control using reduced order models: Guaranteed stability for constrained linear systems [J].
Loehning, Martin ;
Reble, Marcus ;
Hasenauer, Jan ;
Yu, Shuyou ;
Allgoewer, Frank .
JOURNAL OF PROCESS CONTROL, 2014, 24 (11) :1647-1659