A Multiview Brain Network Transformer Fusing Individualized Information for Autism Spectrum Disorder Diagnosis

被引:3
作者
Dong, Qunxi [1 ,2 ]
Cai, Hongxin [1 ,2 ]
Li, Zhigang [1 ,2 ]
Liu, Jingyu [1 ,2 ]
Hu, Bin [1 ,2 ]
机构
[1] Beijing Inst Technol, Minist Educ, Key Lab Brain Hlth Intelligent Evaluat & Intervent, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Transformers; Brain modeling; Feature extraction; Bioinformatics; Autism; Fuses; Data models; Attention network; autism spectrum diso rder; brain network; fusion; individualized; transformer; FUNCTIONAL CONNECTIVITY; CHILDREN; DISEASE; OVERCONNECTIVITY;
D O I
10.1109/JBHI.2024.3396457
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Functional connectivity (FC) networks, built from analyses of resting-state magnetic resonance imaging (rs-fMRI), serve as efficacious biomarkers for identifying Autism Spectrum Disorders (ASD) patients. Given the neurobiological heterogeneity across individuals and the unique presentation of ASD symptoms, the fusion of individualized information into diagnosis becomes essential. However, this aspect is overlooked in most methods. Furthermore, the existing methods typically focus on studying direct pairwise connections between brain ROIs, while disregarding interactions between indirectly connected neighbors. To overcome above challenges, we build common FC and individualized FC by tangent pearson embedding (TP) and common orthogonal basis extraction (COBE) respectively, and present a novel multiview brain transformer (MBT) aimed at effectively fusing common and indivinformation of subjects. MBT is mainly constructed by transformer layers with diffusion kernel (DK), fusion quality-inspired weighting module (FQW), similarity loss and orthonormal clustering fusion readout module (OCFRead). DK transformer can incorporate higher-order random walk methods to capture wider interactions among indirectly connected brain regions. FQW promotes adaptive fusion of features between views, and similarity loss and OCFRead are placed on the last layer to accomplish the ultimate integration of information. In our method, TP, DK and FQW modules all help to model wider connectivity in the brain that make up for the shortcomings of traditional methods. We conducted experiments on the public ABIDE dataset based on AAL and CC200 respectively. Our framework has shown promising results, outperforming state-of-the-art methods on both templates. This suggests its potential as a valuable approach for clinical ASD diagnosis.
引用
收藏
页码:4854 / 4865
页数:12
相关论文
共 61 条
[1]   Abnormal whole-brain functional connection in amnestic mild cognitive impairment patients [J].
Bai, Feng ;
Liao, Wei ;
Watson, David R. ;
Shi, Yongmei ;
Wang, Yi ;
Yue, Chunxian ;
Teng, Yuhuan ;
Wu, Di ;
Yuan, Yonggui ;
Jia, Jianping ;
Zhang, Zhijun .
BEHAVIOURAL BRAIN RESEARCH, 2011, 216 (02) :666-672
[2]   The relationship between spatial configuration and functional connectivity of brain regions revisited [J].
Bijsterbosch, Janine Diane ;
Beckmann, Christian F. ;
Woolrich, Mark W. ;
Smith, Stephen M. ;
Harrison, Samuel J. .
ELIFE, 2019, 8
[3]   Cognitive Neuropsychology twenty years on [J].
Caramazza, A ;
Coltheart, M .
COGNITIVE NEUROPSYCHOLOGY, 2006, 23 (01) :3-12
[4]  
Christensen Deborah L, 2016, MMWR Surveill Summ, V65, P1, DOI [10.15585/mmwr.ss6513a1, 10.15585/mmwr.ss6503a1]
[5]  
Craddock C., 2013, Front Neuroinform, V42, P10, DOI 10.3389
[6]   A whole brain fMRI atlas generated via spatially constrained spectral clustering [J].
Craddock, R. Cameron ;
James, G. Andrew ;
Holtzheimer, Paul E., III ;
Hu, Xiaoping P. ;
Mayberg, Helen S. .
HUMAN BRAIN MAPPING, 2012, 33 (08) :1914-1928
[7]   BrainGB: A Benchmark for Brain Network Analysis With Graph Neural Networks [J].
Cui, Hejie ;
Dai, Wei ;
Zhu, Yanqiao ;
Kan, Xuan ;
Gu, Antonio Aodong Chen ;
Lukemire, Joshua ;
Zhan, Liang ;
He, Lifang ;
Guo, Ying ;
Yang, Carl .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (02) :493-506
[8]   Individual Variation in Functional Topography of Association Networks in Youth [J].
Cui, Zaixu ;
Li, Hongming ;
Xia, Cedric H. ;
Larsen, Bart ;
Adebimpe, Azeez ;
Baum, Graham L. ;
Cieslak, Matt ;
Gur, Raquel E. ;
Gur, Ruben C. ;
Moore, Tyler M. ;
Oathes, Desmond J. ;
Alexander-Bloch, Aaron F. ;
Raznahan, Armin ;
Roalf, David R. ;
Shinohara, Russell T. ;
Wolf, Daniel H. ;
Davatzikos, Christos ;
Bassett, Danielle S. ;
Fair, Damien A. ;
Fan, Yong ;
Satterthwaite, Theodore D. .
NEURON, 2020, 106 (02) :340-+
[9]   Classifying ASD based on time-series fMRI using spatial-temporal transformer [J].
Deng, Xin ;
Zhang, Jiahao ;
Liu, Rui ;
Liu, Ke .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 151
[10]   The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism [J].
Di Martino, A. ;
Yan, C-G ;
Li, Q. ;
Denio, E. ;
Castellanos, F. X. ;
Alaerts, K. ;
Anderson, J. S. ;
Assaf, M. ;
Bookheimer, S. Y. ;
Dapretto, M. ;
Deen, B. ;
Delmonte, S. ;
Dinstein, I. ;
Ertl-Wagner, B. ;
Fair, D. A. ;
Gallagher, L. ;
Kennedy, D. P. ;
Keown, C. L. ;
Keysers, C. ;
Lainhart, J. E. ;
Lord, C. ;
Luna, B. ;
Menon, V. ;
Minshew, N. J. ;
Monk, C. S. ;
Mueller, S. ;
Mueller, R. A. ;
Nebel, M. B. ;
Nigg, J. T. ;
O'Hearn, K. ;
Pelphrey, K. A. ;
Peltier, S. J. ;
Rudie, J. D. ;
Sunaert, S. ;
Thioux, M. ;
Tyszka, J. M. ;
Uddin, L. Q. ;
Verhoeven, J. S. ;
Wenderoth, N. ;
Wiggins, J. L. ;
Mostofsky, S. H. ;
Milham, M. P. .
MOLECULAR PSYCHIATRY, 2014, 19 (06) :659-667