Forward and inverse problems for creep models in viscoelasticity

被引:0
作者
Itou, H. [1 ]
Kovtunenko, V. A. [2 ,3 ]
Nakamura, G. [4 ,5 ]
机构
[1] Tokyo Univ Sci, Dept Math, Tokyo 1628601, Japan
[2] Karl Franzens Univ Graz, Dept Math & Sci Comp, NAWIGraz, Heinrichstr 36, A-8010 Graz, Austria
[3] Russian Acad Sci, Siberian Div, Lavrentyev Inst Hydrodynam, Novosibirsk 630090, Russia
[4] Hokkaido Univ, Dept Math, Grad Sch Sci, Sapporo, Hokkaido 0600810, Japan
[5] Hokkaido Univ, Res Inst Elect Sci, Res Ctr Math Social Creat, Sapporo 0600812, Japan
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2024年 / 382卷 / 2277期
基金
日本学术振兴会;
关键词
viscoelasticity; integral equation; implicit graph; variational method; inverse problem; creep; ADJACENT; STRESS; CRACK;
D O I
10.1098/rsta.2023.0295
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study examines a class of time-dependent constitutive equations used to describe viscoelastic materials under creep in solid mechanics. In nonlinear elasticity, the strain response to the applied stress is expressed via an implicit graph allowing multi-valued functions. For coercive and maximal monotone graphs, the existence of a solution to the quasi-static viscoelastic problem is proven by applying the Browder-Minty fixed point theorem. Moreover, for quasi-linear viscoelastic problems, the solution is constructed as a semi-analytic formula. The inverse viscoelastic problem is represented by identification of a design variable from non-smooth measurements. A non-empty set of optimal variables is obtained based on the compactness argument by applying Tikhonov regularization in the space of bounded measures and deformations. Furthermore, an illustrative example is given for the inverse problem of isotropic kernel identification.This article is part of the theme issue 'Non-smooth variational problems with applications in mechanics'.
引用
收藏
页数:14
相关论文
共 43 条
  • [1] Anderssen RS, 1998, SIAM J APPL MATH, V58, P703
  • [2] Boltzmann L., 1874, SITZUNGSBERICHTE MN, V70, P275, DOI 10.1002/andp.18782411107
  • [3] Fractional viscoelastic models for power-law materials
    Bonfanti, A.
    Kaplan, J. L.
    Charras, G.
    Kabla, A.
    [J]. SOFT MATTER, 2020, 16 (26) : 6002 - 6020
  • [4] Bulícek M, 2022, J MATH FLUID MECH, V24, DOI [10.1007/800021-022-00696-1, 10.1007/s00021-022-00696-1]
  • [5] Burgers J M., 1939, First Report on Viscosity and Plasticity, P5
  • [6] Caputo M., 1971, Rivista del Nuovo Cimento, V1, P161, DOI 10.1007/BF02820620
  • [7] LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2
    CAPUTO, M
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05): : 529 - &
  • [8] Carillo Sandra., 2016, VISCOELASTIC VISCOPL, P295, DOI [10.5772/61921, DOI 10.5772/61921]
  • [9] de Hoop MV, 2024, Arxiv, DOI arXiv:2308.03988
  • [10] de Hoop MV, 2023, Arxiv, DOI [arXiv:2308.16322, 10.48550/arXiv.2308.16322, DOI 10.48550/ARXIV.2308.16322]