Electric-Controlled Switching ON/OFF of Bands in a Graphene-Based Multi-band Metamaterial Absorber

被引:0
作者
Kumar, Raghwendra [1 ]
机构
[1] Patna Univ, Bihar Natl Coll, Dept Phys, Patna 800004, India
关键词
Metamaterial absorber; Graphene; Band switchable absorber; Critical coupling and guided-mode resonance; RESONANCE; PERFECT; INDEX; METASURFACE; PHOTONICS;
D O I
10.1007/s11468-024-02547-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Optical switches utilizing micro/nanostructures are currently in high demand. To enhance frequency-selective light absorption and achieve absorption-mediated switching, a novel design of graphene-assisted multi-band metamaterial absorber is numerically investigated at optical to near-infrared frequencies. It features a thin silicon layer with circular perforations on a monolayer graphene supported by a metallic substrate. The finite integration technique-based Computer Simulation Technology (CST) Microwave studio is used for numerical simulations. The coupled mode theory (CMT) is applied to validate the numerical results and to elucidate the origin of absorption. Simulation results show that the multi-band absorption is significantly enhanced due to critical coupling facilitated by guided-mode resonances within the system. The absorber exhibits four narrow absorption bands at wavelengths of 551 nm, 671 nm, 817 nm, and 1071 nm, with absorptances of approximately 1, 0.54, 1, and 0.92, respectively. The full width at half maximum (FWHM) for these bands are 6 nm, 5 nm, 11 nm, and 8 nm, respectively. The main advantage of this absorber is its ability to electrically control the number of absorption bands. By applying an external gate voltage across the graphene layer, it can be switched from a multi-band absorber to a triple/double/single-band absorber or even a perfect reflector. The absorption spectra are investigated by considering various factors, including different geometrical parameters, light polarization, chemical potential, and angle of incidence. Due to its multiple resonance wavelengths, high absorptance, insensitivity to polarization, and ability to switch bands, the proposed absorber holds promise for various applications across the visible to near-infrared frequency range.
引用
收藏
页码:3313 / 3323
页数:11
相关论文
共 50 条
  • [21] Quad-band Graphene-Based Terahertz Metamaterial Perfect Absorber for Refractive Index Sensing
    Shruti
    Appasani, Bhargav
    Pahadsingh, Sasmita
    PLASMONICS, 2022, 17 (06) : 2323 - 2336
  • [22] Quad-band Graphene-Based Terahertz Metamaterial Perfect Absorber for Refractive Index Sensing
    Bhargav Shruti
    Sasmita Appasani
    Plasmonics, 2022, 17 : 2323 - 2336
  • [23] Graphene-based tunable broadband metamaterial absorber for terahertz waves
    Zhang, Kaihua
    Dong, Shiwei
    Wu, Xiaohu
    Yu, Kun
    Liu, Yufang
    OPTICS AND LASER TECHNOLOGY, 2025, 180
  • [24] Graphene-based Tunable Terahertz Metamaterial Absorber with High Absorptivity
    Song, Jianxun
    Xu, Yongzhao
    Ling, Dongxiong
    Wei, Dongshan
    Yang, Chang
    Shen, Yun
    2018 IEEE INTERNATIONAL CONFERENCE ON MANIPULATION, MANUFACTURING AND MEASUREMENT ON THE NANOSCALE (3M-NANO) - CONFERENCE PROCEEDINGS, 2018, : 232 - 236
  • [25] Multi-Band Metamaterial Absorber: Design, Experiment and Physical Interpretation
    Dincer, F.
    Karaaslan, M.
    Unal, E.
    Akgol, O.
    Sabah, C.
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2014, 29 (03): : 197 - 202
  • [26] Reconfigurable multi-band electromagnetically induced transparency metamaterial based on graphene
    Meng, Rui
    Hou, Ya-Hui
    Zheng, Qi
    Liang, Jing-Jing
    Yang, Shu-Hui
    Li, Bin
    Guan, Hong-Zhou
    Fu, Zi-Hao
    Zhang, Li
    Huo, Kai-Li
    Cao, Mao-Sheng
    CARBON, 2024, 229
  • [27] A graphene-based tunable polarization insensitive terahertz metasurface absorber for multi-band high-efficiency applications
    Sheheryar, Taha
    Tian, Ye
    Lv, Bo
    Chu, Xiuqin
    Shi, Jinhui
    JOURNAL OF MATERIALS CHEMISTRY C, 2025, 13 (11) : 5545 - 5554
  • [28] A graphene-based tunable polarization insensitive terahertz metasurface absorber for multi-band high-efficiency applications
    Sheheryar, Taha
    Tian, Ye
    Lv, Bo
    Chu, Xiuqin
    Shi, Jinhui
    JOURNAL OF MATERIALS CHEMISTRY C, 2025,
  • [29] Multi-band circuit model of tunable THz absorber based on graphene sheet and ribbons
    Biabanifard, Mohammad
    Abrishamian, Mohammad Sadegh
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2018, 95 : 256 - 263
  • [30] Quad-band tunable graphene-based metamaterial absorber operating at THz frequencies
    Mohammad Mahdi Ghods
    Majid Afsahi
    Optical and Quantum Electronics, 2021, 53