Binary Black Hole Parameter Estimation from Gravitational Waves with Deep Learning Methods

被引:0
作者
Sakellariou, Panagiotis N. [1 ]
Georgakopoulos, Spiros, V [1 ]
机构
[1] Univ Thessaly, Dept Math, 3rd Km Old Natl Rd, Lamia Athens 35100, Lamia, Greece
来源
ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2024 | 2024年 / 2141卷
关键词
Deep Learning; Neural Networks; Gravitational Waves; Black Holes; Parameter Estimation; Convolutional Neural Networks;
D O I
10.1007/978-3-031-62495-7_6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new era in observational astrophysics has been inaugurated by the discovery of gravitational waves, offering a unique lens into celestial phenomena that are elusive to conventional electromagnetic detection. The potential of extracting vital parameters from gravitational waves emitted by Binary Black Hole systems is explored, leveraging the capabilities of Deep Learning Methods. A Convolutional Neural Network architecture is introduced in this work, specifically designed for the precise estimation of the masses and distances of Binary Black Hole systems. The effectiveness and robustness of the proposed architecture in accurately estimating these parameters is demonstrated. This research signifies a significant stride towards enhancing our understanding of Binary Black Hole phenomena and underscores the transformative role of Artificial Intelligence in observational astrophysics.
引用
收藏
页码:70 / 81
页数:12
相关论文
共 21 条
  • [1] Gravitational-wave physics and astronomy in the 2020s and 2030s
    Bailes, M.
    Berger, B. K.
    Brady, P. R.
    Branchesi, M.
    Danzmann, K.
    Evans, M.
    Holley-Bockelmann, K.
    Iyer, B. R.
    Kajita, T.
    Katsanevas, S.
    Kramer, M.
    Lazzarini, A.
    Lehner, L.
    Losurdo, G.
    Luck, H.
    McClelland, D. E.
    McLaughlin, M. A.
    Punturo, M.
    Ransom, S.
    Raychaudhury, S.
    Reitze, D. H.
    Ricci, F.
    Rowan, S.
    Saito, Y.
    Sanders, G. H.
    Sathyaprakash, B. S.
    Schutz, B. F.
    Sesana, A.
    Shinkai, H.
    Siemens, X.
    Shoemaker, D. H.
    Thorpe, J.
    van den Brand, J. F. J.
    Vitale, S.
    [J]. NATURE REVIEWS PHYSICS, 2021, 3 (05) : 344 - 366
  • [2] Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors
    Bohe, Alejandro
    Shao, Lijing
    Taracchini, Andrea
    Buonanno, Alessandra
    Babak, Stanislav
    Harry, Ian W.
    Hinder, Ian
    Ossokine, Serguei
    Puerrer, Michael
    Raymond, Vivien
    Chu, Tony
    Fong, Heather
    Kumar, Prayush
    Pfeiffer, Harald P.
    Boyle, Michael
    Hemberger, Daniel A.
    Kidder, Lawrence E.
    Lovelace, Geoffrey
    Scheel, Mark A.
    Szilagyi, Bela
    [J]. PHYSICAL REVIEW D, 2017, 95 (04)
  • [3] Scalable auto-encoders for gravitational waves detection from time series data
    Corizzo, Roberto
    Ceci, Michelangelo
    Zdravevski, Eftim
    Japkowicz, Nathalie
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2020, 151
  • [4] Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors
    Fan, XiLong
    Li, Jin
    Li, Xin
    Zhong, YuanHong
    Cao, JunWei
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2019, 62 (06)
  • [5] Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy
    Gabbard, Hunter
    Williams, Michael
    Hayes, Fergus
    Messenger, Chris
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (14)
  • [6] Convolutional neural networks: A magic bullet for gravitational-wave detection?
    Gebhard, Timothy D.
    Kilbertus, Niki
    Harry, Ian
    Schoelkopf, Bernhard
    [J]. PHYSICAL REVIEW D, 2019, 100 (06)
  • [7] Deep Learning for real-time gravitational wave detection and parameter estimation: Results with Advanced LIGO data
    George, Daniel
    Huerta, E. A.
    [J]. PHYSICS LETTERS B, 2018, 778 : 64 - 70
  • [8] Deep neural networks to enable real-time multimessenger astrophysics
    George, Daniel
    Huerta, E. A.
    [J]. PHYSICAL REVIEW D, 2018, 97 (04)
  • [9] Detection and parameter estimation of gravitational waves from binary neutron-star mergers in real LIGO data using deep learning
    Krastev, Plamen G.
    Gill, Kiranjyot
    Villar, V. Ashley
    Berger, Edo
    [J]. PHYSICS LETTERS B, 2021, 815
  • [10] Detection of gravitational waves using Bayesian neural networks
    Lin, Yu-Chiung
    Wu, Jiun-Huei Proty
    [J]. PHYSICAL REVIEW D, 2021, 103 (06)