Highly efficient mobility, separation and charge transfer in black SnO2-TiO2 structures with co-catalysts: the key step for the photocatalytic hydrogen evolution

被引:5
作者
Mantilla, Angeles [1 ]
Guerrero-Araque, Diana [2 ]
Sierra-Uribe, Jhon Harrison [3 ]
Lartundo-Rojas, Luis [4 ]
Gomez, Ricardo [3 ]
Calderon, Hector A. [5 ]
Zanella, Rodolfo [6 ]
Ramirez-Ortega, David [1 ,7 ]
机构
[1] CICATA Legaria, Inst Politecn Nacl, Lab Fotocatalisis, Legaria 694,Col Irrigac, Mexico City 11500, Mexico
[2] Univ Autonoma Metropolitana, Dept Quim, CONAHCyT, Ave San Rafael Atlixco 156, Mexico City 09340, Mexico
[3] Univ Autonoma Metropolitana, Dept Quim, Ave San Rafael Atlixco 156, Mexico City 09340, Mexico
[4] Inst Politecn Nacl, Ctr Nanociencias & Micro & Nanotecnol, Mexico City, Mexico
[5] UPALM, Inst Politecn Nacl, Dept Fis, ESFM, Miguel Othon de Mendizabal S-N, Mexico City 07320, Mexico
[6] Univ Nacl Autonoma Mexico, Inst Ciencias Aplicadas & Tecnol, Ciudad Univ,Circuito Exterior S-N, Mexico City MX04510, Mexico
[7] Inst Politecn Nacl, ENCB, UPALM, Edificio 8,Ave Luis Enr Erro S-N, Mexico City 07738, Mexico
关键词
RAY PHOTOELECTRON-SPECTROSCOPY; SNO2; THIN-FILMS; ELECTRONIC-PROPERTIES; H-2; PRODUCTION; SURFACE-CHEMISTRY; OXYGEN VACANCIES; ACTIVE-SITES; TIO2; XPS; NANOPARTICLES;
D O I
10.1039/d4ra03731f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Oxygen vacancies and co-catalysts enhance photocatalytic hydrogen production by improving the charge carrier separation. Herein, the black SnO2-TiO2 structure (BST) was synthesized for the first time by two consecutive methods. First, the sol-gel nucleation method allowed TiO2 to form on the SnO2 nanoparticles, creating a strong interaction and direct contact between them. Subsequently, this structure was reduced by NaBH4 during thermal treatment, generating (Ti3+/Sn2+) states to form the BST. Then, 2 wt% of Co, Cu or Pd was impregnated onto BST. The results showed that the activity raised with the presence of Ti3+/Sn2+ states, reaching a hydrogen generation rate of 147.50 mu mol g(-1) h(-1) with BST in comparison with the rate of 99.50 mu mol g(-1) h(-1) for white SnO2-TiO2. On the other hand, the interaction of the co-catalysts with the BST structure helped to increase the photocatalytic hydrogen production rates: 154.10 mu mol g(-1) h(-1), 384.18 mu mol g(-1) h(-1) and 480.20 mu mol g(-1) h(-1) for cobalt-BST, copper-BST and palladium-BST, respectively. The results can be associated with the creation of Ti3+/Sn2+ at the BST interface that changes the lifetime of the charge carrier, improving the separation of photogenerated electrons and holes and the co-catalysts in the structures move the flat band position and increasing the photocurrent response to having electrons with greater reducing power.
引用
收藏
页码:26259 / 26271
页数:13
相关论文
共 100 条
[1]   A novel solar radiation absorption enhancement of TiO2 nanomaterial by a simple hydrogenation method [J].
Abdelmaksoud, M. K. ;
Sayed, Abderrahman ;
Sayed, Sarah ;
Abbas, M. .
JOURNAL OF MATERIALS RESEARCH, 2021, 36 (10) :2118-2131
[2]   Scaling up the charge transfer on Pd@Ti3C2Tx-TiO2 catalysts: a sustainable approach for H2 generation via water splitting [J].
Abid, Muhammad Zeeshan ;
Rafiq, Khezina ;
Rauf, Abdul ;
Althomali, Raed H. ;
Hussain, Ejaz .
MATERIALS ADVANCES, 2024, 5 (06) :2238-2252
[3]   Structural and electronic properties of SnO2 [J].
Akgul, Funda Aksoy ;
Gumus, Cebrail ;
Er, Ali O. ;
Farha, Ashraf H. ;
Akgul, Guvenc ;
Ufuktepe, Yuksel ;
Liu, Zhi .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 579 :50-56
[4]   CuO/Cu(OH)2 hierarchical nanostructures as bactericidal photocatalysts [J].
Akhavan, O. ;
Azimirad, R. ;
Safa, S. ;
Hasani, E. .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (26) :9634-9640
[5]   X-RAY PHOTOELECTRON SPECTROSCOPIC STUDIES OF TIN ELECTRODES AFTER POLARIZATION IN SODIUM-HYDROXIDE SOLUTION [J].
ANSELL, RO ;
DICKINSON, T ;
POVEY, AF ;
SHERWOOD, PMA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1977, 124 (09) :1360-1364
[6]   Rutile TiO2-Pd Photocatalysts for Hydrogen Gas Production from Methanol Reforming [J].
Bahruji, H. ;
Bowker, M. ;
Davies, P. R. ;
Morgan, D. J. ;
Morton, C. A. ;
Egerton, T. A. ;
Kennedy, J. ;
Jones, Wilm .
TOPICS IN CATALYSIS, 2015, 58 (2-3) :70-76
[7]   Co-MOF as a sacrificial template: manifesting a new Co3O4/TiO2 system with a p-n heterojunction for photocatalytic hydrogen evolution [J].
Bala, Sukhen ;
Mondal, Indranil ;
Goswami, Arijit ;
Pal, Ujjwal ;
Mondal, Raju .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (40) :20288-20296
[8]   Substoichiometric Tuning of the Electronic Properties of Titania [J].
Bell, Crystal N. ;
Lee, Dong-Chan ;
Drexler, Matthew N. ;
Rouleau, Christopher M. ;
Sasaki, Kotaro ;
Senanayake, Sanjaya D. ;
Williams, Michael D. ;
Alamgir, Faisal M. .
THIN SOLID FILMS, 2021, 717
[9]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn [J].
Biesinger, Mark C. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2010, 257 (03) :887-898
[10]   Black TiO2-x Nanoparticles Decorated with Ni Nanoparticles and Trace Amounts of Pt Nanoparticles for Photocatalytic Hydrogen Generation [J].
Biswas, Shubham ;
Lee, Ha-Young ;
Prasad, Manohar ;
Sharma, Abhishek ;
Yu, Jong-Sung ;
Sengupta, Siddhartha ;
Pathak, Devendra Deo ;
Sinhamahapatra, Apurba .
ACS APPLIED NANO MATERIALS, 2021, 4 (05) :4441-4451