Identification of Phishing URLs Using Machine Learning Models

被引:0
|
作者
Vivek, Meghashyam [1 ]
Premjith, Nithin [1 ]
Johnson, Aaron Antonio [1 ]
Maurya, Ashutosh Kumar [1 ]
Jingle, I. Diana Jeba [1 ]
机构
[1] Christ, Bangalore, Karnataka, India
来源
FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 3, CIS 2023 | 2024年 / 865卷
关键词
XGBoost; Phishing; Prediction; Machine learning; Classifier;
D O I
10.1007/978-981-99-9043-6_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we provide a machine learning-based method for identifying phishing URLs. Sixteen features, including Have IP, Have At, URL Length, URL Depth, Non-standard double slash, HTTPS domain, Shortened URL, Hyphen Count, DNS Record, Domain age, Domain active, iFrame, Mouse Over, Right click, Web Forwards, and Label, were extracted from the 600,000 URLs we gathered as a dataset of legitimate and phishing URLs. We then used this dataset to train a variety of machine learning models. These included standalone models such Naive Bayes, Logistic Regression, Decision Trees, and K-Nearest Neighbors (KNN). We also used ensemble models like Hard Voting, XGBoost, Random Forests, and AdaBoost. Finally, we used deep learning models such as Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), Gated Recurrent Units (GRU) and Convolutional Neural Networks (CNN). On evaluation of performance metrics like accuracy, precision, recall, train time and prediction time it was found that XGBoost provides the best performance across all categories.
引用
收藏
页码:209 / 219
页数:11
相关论文
共 50 条
  • [41] Detection of Phishing Websites by Investigating Their URLs using LSTM Algorithm
    Alanzi, Barah Mohammed
    Uliyan, Diaa Mohammed
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (05): : 419 - 428
  • [42] Phishing URL Detection Using Machine Learning and Deep Learning
    Ferdaws, Rawshon
    Majd, Nahid Ebrahimi
    2024 IEEE 5TH ANNUAL WORLD AI IOT CONGRESS, AIIOT 2024, 2024, : 0485 - 0490
  • [43] Detecting Phishing Attacks Using Natural Language Processing And Machine Learning
    Banu, Reshma
    Anand, M.
    Kamath, Akshatha C.
    Ashika, S.
    Ujwala, H. S.
    Harshitha, S. N.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICCS), 2019, : 1210 - 1214
  • [44] Machine learning models for phishing detection from TLS traffic
    Munish Kumar
    Cheemaladinne Kondaiah
    Alwyn Roshan Pais
    Routhu Srinivasa Rao
    Cluster Computing, 2023, 26 : 3263 - 3277
  • [45] Machine learning models for phishing detection from TLS traffic
    Kumar, Munish
    Kondaiah, Cheemaladinne
    Pais, Alwyn Roshan
    Rao, Routhu Srinivasa
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (05): : 3263 - 3277
  • [46] Mining Web to Detect Phishing URLs
    Basnet, Ram B.
    Sung, Andrew H.
    2012 11TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2012), VOL 1, 2012, : 568 - 573
  • [47] Detection of Phishing Website Using Machine Learning Approach
    Vilas, Mahajan Mayuri
    Ghansham, Kakade Prachi
    Jaypralash, Sawant Purva
    Shila, Pawar
    2019 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER TECHNOLOGIES AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2019, : 384 - +
  • [48] Phishing Email Detection Using Machine Learning Techniques
    Alattas, Hussain
    Aljohar, Fay
    Aljunibi, Hawra
    Alweheibi, Muneera
    Alrashdi, Rawan
    Al Azman, Ghadeer
    Alharby, Abdulrahman
    Nagy, Naya
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (04): : 678 - 685
  • [49] Intelligent phishing website detection using machine learning
    Jha, Ashish Kumar
    Muthalagu, Raja
    Pawar, Pranav M.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (19) : 29431 - 29456
  • [50] Phishing Detection Using Machine Learning Algorithm.
    Tanimu, Jibrilla
    Shiaeles, Stavros
    2022 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE (IEEE CSR), 2022, : 317 - 322