A bioinspired hard-soft composites with strong interfacial bonding, high load-bearing and low friction for osteochondral repair

被引:2
作者
Zhang, Lizhi [1 ,2 ]
Ren, Zhongkan [3 ,4 ]
Fang, Zhen [3 ,4 ]
Wang, Lujie [1 ,3 ]
Li, Tongyang [1 ,3 ]
Yu, Yuan [1 ,3 ]
Tang, Huaguo [1 ,2 ,3 ,4 ]
Qiao, Zhuhui [1 ,2 ,3 ,5 ]
Liu, Weimin [1 ,2 ]
机构
[1] Chinese Acad Sci, Lanzhou Inst Chem Phys, State Key Lab Solid Lubricat, Lanzhou 730000, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100039, Peoples R China
[3] Shandong Lab Adv Mat & Green Manufacture Yantai, Yantai 264006, Peoples R China
[4] Yantai Zhongke Res Inst Adv Mat & Green Chem Engn, Yantai 264006, Peoples R China
[5] Qingdao Ctr Resource Chem & New Mat, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
Porous Si 3 N 4 ceramic; PVA-CBA hydrogel; Strong interfacial bonding; High mechanical strength; Low friction; SCAFFOLDS;
D O I
10.1016/j.triboint.2024.110031
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The development of osteochondral composites that simultaneously exhibit superior load-bearing performance and lubrication properties remains a significant challenge. In this investigation, a novel hard-soft composite material, which utilizes porous Si3N4 ceramics as a structural support and PVA-CBA (synthesis by condensation of polyvinyl alcohol and 4-formylbenzoic acid) hydrogels as a lubrication, was fabricated via impregnating the hydrogel into porous ceramics, namely Si3N4/PVA-CBA composites. It demonstrates strong interfacial bonding, comprising macro-micro scale mechanical interlocking and molecular scale chemical crosslinking. The developed material exhibits high mechanical strength ( 103.2 MPa and 1500 % larger than the corresponding value of porous Si3N4 ceramics), low friction and wear ( 0.21 under 10 N load and 10 Hz frequency), and favorable cell adhesion and proliferation. This provides an effective strategy for designing hard-soft composite material in the osteochondral repair field.
引用
收藏
页数:7
相关论文
共 33 条
[1]   Construction of the SiC nanowires network structure decorated by MoS2 nanoflowers in porous Si3N4 ceramics for electromagnetic wave absorption [J].
Bai, Jialin ;
Huang, Shijie ;
Yao, Xiumin ;
Liu, Xuejian ;
Huang, Zhengren .
CHEMICAL ENGINEERING JOURNAL, 2023, 469
[2]  
Baumann C.A., 2019, Joint Preservation of the Knee, P3, DOI [10.1007/978-3-030-01491-9_1, DOI 10.1007/978-3-030-01491-9_1]
[3]   Directed cell growth in multi-zonal scaffolds for cartilage tissue engineering [J].
Camarero-Espinosa, Sandra ;
Rothen-Rutishauser, Barbara ;
Weder, Christoph ;
Foster, E. Johan .
BIOMATERIALS, 2016, 74 :42-52
[4]   Multiphasic scaffolds for the repair of osteochondral defects: Outcomes of preclinical studies [J].
Chen, Rouyan ;
Pye, Jasmine Sarah ;
Li, Jiarong ;
Little, Christopher B. ;
Li, Jiao Jiao .
BIOACTIVE MATERIALS, 2023, 27 :505-545
[5]   A single integrated osteochondral in situ composite scaffold with a multi-layered functional structure [J].
Chen, Taijun ;
Bai, Jiafan ;
Tian, Jiajun ;
Huang, Pinhe ;
Zheng, Hua ;
Wang, Jianxin .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2018, 167 :354-363
[6]   3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defects [J].
Critchley, Susan ;
Sheehy, Eamon J. ;
Cunniffe, Grainne ;
Diaz-Payno, Pedro ;
Carroll, Simon F. ;
Jeon, Oju ;
Alsberg, Eben ;
Brama, Pieter A. J. ;
Kelly, Daniel J. .
ACTA BIOMATERIALIA, 2020, 113 :130-143
[7]   Magnesium Gradient-Based Hierarchical Scaffold for Dual-Lineage Regeneration of Osteochondral Defect [J].
Gao, Chenyuan ;
Dai, Wenli ;
Wang, Xinyu ;
Zhang, Liwen ;
Wang, Yue ;
Huang, Yiqian ;
Yuan, Zuoying ;
Zhang, Xin ;
Yu, Yingjie ;
Yang, Xiaoping ;
Cai, Qing .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (43)
[8]   Osteochondral Regeneration with 3D-Printed Biodegradable High-Strength Supramolecular Polymer Reinforced-Gelatin Hydrogel Scaffolds [J].
Gao, Fei ;
Xu, Ziyang ;
Liang, Qingfei ;
Li, Haofei ;
Peng, Liuqi ;
Wu, Mingming ;
Zhao, Xiaoli ;
Cui, Xu ;
Ruan, Changshun ;
Liu, Wenguang .
ADVANCED SCIENCE, 2019, 6 (15)
[9]   Direct 3D Printing of High Strength Biohybrid Gradient Hydrogel Scaffolds for Efficient Repair of Osteochondral Defect [J].
Gao, Fei ;
Xu, Ziyang ;
Liang, Qingfei ;
Liu, Bo ;
Li, Haofei ;
Wu, Yuanhao ;
Zhang, Yinyu ;
Lin, Zifeng ;
Wu, Mingming ;
Ruan, Changshun ;
Liu, Wenguang .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (13)
[10]   Phospholipid reinforced P(AAm-co-AAc)/Fe3+ hydrogel with ultrahigh strength and superior tribological performance [J].
Huang, Shangtao ;
Wang, Binbin ;
Zhao, Xueyang ;
Li, Shuangjian ;
Liang, Xiangchao ;
Zeng, Rong ;
Li, Wei ;
Wang, Xiaojian .
TRIBOLOGY INTERNATIONAL, 2022, 168