Stability of Nitrogen-Doped Activated Carbon as an Electrocatalyst for the Oxygen Reduction Reaction in Various Storage Media

被引:0
|
作者
Zhang, Tao [1 ,2 ]
Zuo, Songlin [1 ,2 ]
机构
[1] Nanjing Forestry Univ, Coll Chem Engn, Int Innovat Ctr Forest Chem & Mat, Nanjing 210037, Peoples R China
[2] Nanjing Forestry Univ, Jiangsu Coinnovat Ctr Efficient Proc & Utilizat Fo, Nanjing 210037, Peoples R China
来源
MOLECULES | 2024年 / 29卷 / 15期
基金
中国国家自然科学基金;
关键词
nitrogen-doped carbon materials; storage; stability; catalytic activity; pyridinic N; graphitic N; SURFACE-CHEMISTRY; INSIGHTS; SITES;
D O I
10.3390/molecules29153611
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Besides outstanding catalytic performance, the stability of nitrogen-doped carbon materials during storage is equally crucial for practical applications. Therefore, we conducted the first investigation into the stability of highly nitrogen-doped activated carbon (AC-NC-T) obtained by modifying activated carbon with CO2/NH3 in different storage media (air, vacuum and N2). The results of the catalysis of the oxygen reduction reaction and the activation of peroxymonosulfate for degrading bisphenol A by AC-NC-T show that the catalytic activity of AC-NC-T stored in air decays most prominently, while the performance attenuated only marginally when stored in vacuum and N2. The results from N2 adsorption isotherms, Raman spectroscopy, elemental and X-ray photoelectron spectroscopy indicate that the decline in catalytic activity is due to the presence of oxygen in the environment, causing a decrease in absolute contents of pyridinic N (N-6) and graphitic nitrogen (N-Q). After being stored in an air atmosphere for 28 days, the absolute contents of N-6 and N-Q in AC-NC-950 decreased by 19.3% and 12.1%, respectively. However, when stored in a vacuum or N2, the reduction in both was less than 7%. This study demonstrates that reducing oxygen concentration during storage is crucial for preserving high catalytic activity of nitrogen-containing carbon materials.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] MoS2/Nitrogen-doped graphene as efficient electrocatalyst for oxygen reduction reaction
    Zhao, Kai
    Gu, Wei
    Zhao, Longyun
    Zhang, Cuiling
    Peng, Weidong
    Xian, Yuezhong
    ELECTROCHIMICA ACTA, 2015, 169 : 142 - 149
  • [32] Cobalt selenide electrocatalyst supported by nitrogen-doped carbon and its stable activity toward oxygen reduction reaction
    Chao, Yu-Syuan
    Tsai, Dah-Shyang
    Wu, An-Pang
    Tseng, Ling-Wei
    Huang, Ying-Sheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (14) : 5655 - 5664
  • [33] Fe2O3 embedded nitrogen-doped biomass carbon as electrocatalyst for the oxygen reduction reaction
    School of Transportation and Civil Engineering, Shandong Jiaotong University, Jinan, China
    J. Phys. Conf. Ser., 2021, 1
  • [34] Porous nitrogen-doped carbon nanofibers as highly efficient metal-free electrocatalyst for oxygen reduction reaction
    Yin, Jing
    Qiu, Yejun
    Yu, Jie
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 702 : 56 - 59
  • [35] Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction
    Pan, Fuping
    Cao, Zhongyue
    Zhao, Qiuping
    Liang, Hongyu
    Zhang, Junyan
    JOURNAL OF POWER SOURCES, 2014, 272 : 8 - 15
  • [36] Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction
    State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
    不详
    J Power Sources, (8-15):
  • [37] Biomass coffee grounds derived nitrogen-doped ultrafine carbon nanoparticles as an efficient electrocatalyst to oxygen reduction reaction
    Li, Guijun
    Sha, Jingqi
    Sun, Lingtao
    Jin, Rong
    Fu, Tiantian
    Xiang, Yang
    Tang, Yibo
    Lei, Ying
    Si, Yujun
    Guo, Chaozhong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 920
  • [38] Nitrogen-doped carbon black as methanol tolerant electrocatalyst for oxygen reduction reaction in direct methanol fuel cells
    Jeyabharathi, C.
    Venkateshkumar, P.
    Rao, M. Sankara
    Mathiyarasu, J.
    Phani, K. L. N.
    ELECTROCHIMICA ACTA, 2012, 74 : 171 - 175
  • [39] High-performance electrocatalyst based on polyazine derived mesoporous nitrogen-doped carbon for oxygen reduction reaction
    Zhao, Songlin
    Chen, Fushan
    Zhang, Qunfeng
    Meng, Lingtao
    RSC ADVANCES, 2021, 11 (47) : 29555 - 29563
  • [40] Nitrogen-doped porous activated carbon derived from cocoon silk as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction
    Fu, Peng
    Zhou, Lihua
    Sun, Lihua
    Huang, Baohua
    Yuan, Yong
    RSC ADVANCES, 2017, 7 (22) : 13383 - 13389