Feature Extraction and Classification of Motor Imagery EEG Signals in Motor Imagery for Sustainable Brain-Computer Interfaces

被引:2
|
作者
Lu, Yuyi [1 ]
Wang, Wenbo [1 ]
Lian, Baosheng [1 ]
He, Chencheng [1 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
sustainable living; motor imagery EEG signal; multi-wavelet decomposition; feature fusion; SVM-AdaBoost algorithm; ALGORITHM;
D O I
10.3390/su16156627
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Motor imagery brain-computer interface (MI-BCI) systems hold the potential to restore motor function and offer the opportunity for sustainable autonomous living for individuals with a range of motor and sensory impairments. The feature extraction and classification of motor imagery EEG signals related to motor imagery brain-computer interface systems has become a research hotspot. To address the challenges of difficulty in feature extraction and low recognition rates of motor imagery EEG signals caused by individual variations in EEG signals, a classification algorithm for EEG signals based on multi-feature fusion and the SVM-AdaBoost algorithm was proposed to improve the recognition accuracy of motor imagery EEG signals. Initially, the electroencephalography (EEG) signals are preprocessed using Finite Impulse Response (FIR) filters, and a multi-wavelet framework is constructed based on the Morlet wavelet and the Haar wavelet. Subsequently, the preprocessed signals undergo multi-wavelet decomposition to extract energy features, Common Spatial Patterns (CSP) features, Autoregressive (AR) features, and Power Spectral Density (PSD) features. The extracted features are then fused, and the fused feature vector is normalized. Following that, classification is implemented within the SVM-AdaBoost algorithm. To enhance the adaptability of SVM-AdaBoost, the Grid Search method is employed to optimize the penalty parameter and kernel function parameter of the SVM. Concurrently, the Whale Optimization Algorithm is utilized to optimize the learning rate and number of weak learners within the AdaBoost ensemble, thereby refining the overall performance. In addition, the classification performance of the algorithm is validated using a brain-computer interface (BCI) dataset. In this study, it was found that the classification accuracy reached 95.37%. Via the analysis of motor imagery electroencephalography (EEG) signals, the activation patterns in different regions of the brain can be detected and identified, enabling the inference of user intentions and facilitating communication and control between the human brain and external devices.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] An improved feature extraction algorithms of EEG signals based on motor imagery brain-computer interface
    Geng, Xiaozhong
    Li, Dezhi
    Chen, Hanlin
    Yu, Ping
    Yan, Hui
    Yue, Mengzhe
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (06) : 4807 - 4820
  • [2] Feature Analysis of EEG Based Brain-Computer Interfaces to Detect Motor Imagery
    Akbar, Saima
    Martinez-Enriquez, A. M.
    Aslam, Muhammad
    Saleem, Rabeeya
    BRAIN INFORMATICS, BI 2021, 2021, 12960 : 509 - 518
  • [3] Symmetrical feature for interpreting motor imagery EEG signals in the brain-computer interface
    Park, Seung-Min
    Yu, Xinyang
    Chum, Pharino
    Lee, Woo-Young
    Sim, Kwee-Bo
    OPTIK, 2017, 129 : 163 - 171
  • [4] Motor Imagery Classification for Asynchronous EEG-Based Brain-Computer Interfaces
    Wu, Huanyu
    Li, Siyang
    Wu, Dongrui
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 527 - 536
  • [5] Classification in Frequency Domain of EEG Signals of Motor Imagery for Brain Computer Interfaces
    Halici, Ugur
    BIYOMUT: 2009 14TH NATIONAL BIOMEDICAL ENGINEERING MEETING, 2009, : 37 - 40
  • [6] Classification of EEG Signals Based on Filter Bank and Sparse Representation in Motor Imagery Brain-Computer Interfaces
    Wang, Jin
    Wei, Qingguo
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2020, 29 (03)
  • [7] Robust Averaging of Covariances for EEG Recordings Classification in Motor Imagery Brain-Computer Interfaces
    Uehara, Takashi
    Sartori, Matteo
    Tanaka, Toshihisa
    Fiori, Simone
    NEURAL COMPUTATION, 2017, 29 (06) : 1631 - 1666
  • [8] Classification of Motor Imagery Electrocorticogram Signals for Brain-Computer Interface
    Zheng, Wenfeng
    Xu, Fangzhou
    Shu, Minglei
    Zhang, Yingchun
    Yuan, Qi
    Lian, Jian
    Zheng, Yuanjie
    2019 9TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2019, : 530 - 533
  • [9] A Filtering Method for Classification of Motor-Imagery EEG Signals for Brain-Computer Interface
    Ramya, Pinisetty Sri
    Yashasvi, Kondabolu
    Anjum, Arshiya
    Bhattacharyya, Abhijit
    Pachori, Ram Bilas
    PROCEEDINGS OF 2019 5TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMPUTING AND CONTROL (ISPCC 2K19), 2019, : 354 - 360
  • [10] Integrating EEG and MEG Signals to Improve Motor Imagery Classification in Brain-Computer Interface
    Corsi, Marie-Constance
    Chavez, Mario
    Schwartz, Denis
    Hugueville, Laurent
    Khambhati, Ankit N.
    Bassett, Danielle S.
    Fallani, Fabrizio De Vico
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2019, 29 (01)