Enhanced hydrogen production of mid-temperature chemical looping steam methane reforming using lithium-based sorbent particles

被引:9
作者
Liu, Mingkai [1 ]
Liu, Yunlian [1 ,2 ]
Li, Yang [1 ,2 ]
Wang, Xuyun [1 ]
Pan, Ying [1 ]
Jin, Hongguang [1 ]
机构
[1] Chinese Acad Sci, Inst Engn Thermophys, 11 Beisihuanxi Rd, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Enhanced hydrogen production; Mid-temperature steam methane reforming; Chemical looping; In-situ CO2 capture; Lithium silicate particles; CO2; CAPTURE; METAL-OXIDE; OXYGEN; PERFORMANCE; COMBUSTION; SORPTION; PELLETS; CAO; NI; ACTIVATION;
D O I
10.1016/j.cej.2024.155522
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Coupling chemical looping steam methane reforming (CL-SMR) with sorbents comprises a promising approach for enhancing high-purity H-2 production. However, the lack of energy-efficient pathway with high CO2 capture performance sorbents hinders its development. Herein, we prepare lithium-based absorbent particles with porous micromorphologies and large surface areas using various Li-precursors, alkali metal dopants, and particle sizes, achieving fast CO2 sorption-desorption kinetics, high absorption capacity of 0.30 g CO2 g(-1) Li4SiO4, and excellent cyclic stability at a low CO2 concentration (10 vol%). Absorbent paritcles measuring 1 mm, using lithium carbonate as Li-precursor and doped with 20 mol% potassium, demonstrated a high CO2 conversion of 63.7% and a crushing mechanical strength of 25 N over 200 isothermal sorption-desorption cycles. In addition, the enhancement of absorbent particles for CL-SMR was evaluated in a fixed-bed reactor. Mechanical mixed with nickel-based oxygen carriers, lithium-based absorbent carbonation enables the in-situ CO2 removal in CL-SMR process, along with elevated methane conversion (93.3%), hydrogen purity (92.8%), and hydrogen production rate (9.45 mL min(-1) g(-1)) in a single step, while the energy demand of calcination is reduced at mild temperatures (500-600 degrees C). The incorporation of lithium-based absorbents facilitated an alternative reforming mechanism, yielding a notable 15.2% reduction in the apparent activation energy. In-situ DRIFTs experiments, combined with XRD and XPS characterization, further revealed that lithium ions in the absorbent interact with CO2 to form lithium carbonate. This process facilitates in-situ decarbonization, promotes the water-gas shift reaction, and enhances the production of high-purity hydrogen.
引用
收藏
页数:12
相关论文
共 54 条
[21]   Kinetic study of lithium orthosilicate pellets for high-temperature chemical heat pumps [J].
Kim, Seon Tae ;
Nihei, Takuya ;
Kurahashi, Chisato ;
Hoshino, Hitoshi ;
Takasu, Hiroki ;
Kato, Yukitaka .
ENERGY STORAGE, 2019, 1 (04)
[22]   Preparation of spherical Li4SiO4 pellets by novel agar method for high-temperature CO2 capture [J].
Li, Hailong ;
Qu, Mingyu ;
Hu, Yingchao .
CHEMICAL ENGINEERING JOURNAL, 2020, 380
[23]   Carbon network embodied in international trade: Global structural evolution and its policy implications [J].
Li, Y. L. ;
Chen, B. ;
Chen, G. Q. .
ENERGY POLICY, 2020, 139
[24]   Mid-temperature chemical looping methane reforming for hydrogen production via iron-based oxygen carrier particles [J].
Li, Yang ;
Liu, Mingkai ;
Zhang, Jinrui ;
Yang, Tianlong ;
Rao, Qiong ;
Gai, Zhongrui ;
Wang, Xuyun ;
Pan, Ying ;
Jin, Hongguang .
FUEL PROCESSING TECHNOLOGY, 2024, 253
[25]   Synergistic promotions between high purity H2 production and CO2 capture via sorption enhanced chemical looping reforming [J].
Liu, Mingkai ;
Li, Yang ;
Wang, Xuyun ;
Gai, Zhongrui ;
Rao, Qiong ;
Yang, Tianlong ;
Zhang, Jinrui ;
Tang, Sanli ;
Pan, Ying ;
Jin, Hongguang .
FUEL PROCESSING TECHNOLOGY, 2024, 254
[26]   Light-enhanced thermochemical production of solar fuels from methane via nickel-based redox cycle [J].
Liu, Mingkai ;
Zhang, Jinrui ;
Yang, Tianlong ;
Rao, Qiong ;
Gai, Zhongrui ;
Zhao, Jianxiong ;
Pan, Ying ;
Su, Dong ;
Jin, Hongguang .
FUEL, 2023, 335
[27]   Fabrication of efficient and stable Li4SiO4-based sorbent pellets via extrusion-spheronization for cyclic CO2 capture [J].
Ma, Long ;
Qin, Changlei ;
Pi, Shuai ;
Cui, Henan .
CHEMICAL ENGINEERING JOURNAL, 2020, 379
[28]   Experimental investigations on morphology controlled bifunctional NiO nano-electrocatalysts for oxygen and hydrogen evolution [J].
Manjunath, Vishesh ;
Bimli, Santosh ;
Biswas, Rathindranath ;
Didwal, Pravin N. ;
Haldar, Krishna K. ;
Mahajan, Mangesh ;
Deshpande, Nishad G. ;
Bhobe, Preeti A. ;
Devan, Rupesh S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (92) :39018-39029
[29]   Toward Understanding the Effect of Water Sorption on Lithium Zirconate (Li2ZrO3) during Its Carbonation Process at Low Temperatures [J].
Martinez-dlCruz, Lorena ;
Pfeiffer, Heriberto .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (20) :9453-9458
[30]   Textural, Structural, and CO2 Chemisorption Effects Produced on the Lithium Orthosilicate by Its Doping with Sodium (Li4-xNaxSiO4) [J].
Mejia-Trejo, Victoria L. ;
Fregoso-Israel, Esteban ;
Pfeiffer, Heriberto .
CHEMISTRY OF MATERIALS, 2008, 20 (22) :7171-7176