Effect of temperature on the nanoindentation behavior of monocrystalline silicon by molecular dynamics simulations

被引:7
作者
Zhang, Zhijie [1 ,2 ]
Zhang, Zhenqiao [1 ,2 ]
Zhao, Dan [1 ,2 ]
Niu, Yihan [1 ,2 ]
Bai, Dingnan [1 ,2 ]
Wang, Yingying [1 ,2 ]
Song, Mingkai [1 ,2 ]
Zhao, Jiucheng [1 ,2 ]
Wang, Shunbo [1 ,2 ]
Zhu, Bo [1 ,2 ]
Zhao, Hongwei [1 ,2 ,3 ,4 ]
机构
[1] Minist Educ, Key Lab CNC Equipment Reliabil, Changchun 130025, Peoples R China
[2] Jilin Univ, Sch Mech & Aerosp Engn, Changchun 130025, Peoples R China
[3] Jilin Univ, Chongqing Res Inst, Chongqing 401120, Peoples R China
[4] Liaoning Acad Mat, Inst Struct & Architected Mat, Shenyang 110167, Peoples R China
基金
中国国家自然科学基金;
关键词
Monocrystalline Silicon; Deformation behavior; Temperature effect; Phase transformation; Nanoindentation; Molecular dynamics; PHASE-TRANSFORMATIONS; SUBSURFACE DAMAGE; INDENTATION; DEFORMATION; MICROSTRUCTURE; DEPENDENCE; HARDNESS; MODEL;
D O I
10.1016/j.mtcomm.2024.110010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Monocrystalline silicon (Si) undergoes complex phase transformations under external loads, significantly affecting its performance and processing. In this study, molecular dynamics (MD) simulations are performed from 1 to 900 K to explore temperature effects on the mechanical properties and deformation behavior of monocrystalline silicon during nanoindentation. Results indicate that hardness and elastic modulus decrease with rising temperature. At lower temperature, the activation of plastic deformation is delayed. The suddenly release of stored elastic energy manifests as a pop-in event. The indentation creates a quadruple symmetric phase transformation zone, primarily consisting of Si-II at the core, flanked by Si-XIII and bct-5. Increasing temperature advances the plastic deformation of the sample. High temperatures facilitate the formation and subsequent phase transformation of Si-XIII, reduce the stability of bct-5 during unloading, and promote the amorphization of silicon. At high temperatures, the dislocation of silicon nucleates at the subsurface, resulting in the formation of a substable phase. The anisotropy of deformation is evident from the atomic perspective, based on the orientation dependence of the phase transformation. This research provides new insights into the deformation behavior and phase transformations of monocrystalline silicon, supporting manufacturing and application of silicon products.
引用
收藏
页数:14
相关论文
共 65 条
[1]   Origin of a Nanoindentation Pop-in Event in Silicon Crystal [J].
Abram, R. ;
Chrobak, D. ;
Nowak, R. .
PHYSICAL REVIEW LETTERS, 2017, 118 (09)
[2]   Status and perspectives of crystalline silicon photovoltaics in research and industry [J].
Ballif, Christophe ;
Haug, Franz-Josef ;
Boccard, Mathieu ;
Verlinden, Pierre J. ;
Hahn, Giso .
NATURE REVIEWS MATERIALS, 2022, 7 (08) :597-616
[3]   Fatigue and debris generation at indentation-induced cracks in silicon [J].
Bhowmick, Sanjit ;
Cha, Hyunmin ;
Jung, Yeon-Gil ;
Lawn, Brian R. .
ACTA MATERIALIA, 2009, 57 (02) :582-589
[4]   NEW LOW-ENERGY CRYSTAL-STRUCTURE FOR SILICON [J].
BOYER, LL ;
KAXIRAS, E ;
FELDMAN, JL ;
BROUGHTON, JQ ;
MEHL, MJ .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :715-718
[5]   Transmission electron microscopy observation of deformation microstructure under spherical indentation in silicon [J].
Bradby, JE ;
Williams, JS ;
Wong-Leung, J ;
Swain, MV ;
Munroe, P .
APPLIED PHYSICS LETTERS, 2000, 77 (23) :3749-3751
[6]   In situ electrical characterization of phase transformations in Si during indentation -: art. no. 085205 [J].
Bradby, JE ;
Williams, JS ;
Swain, MV .
PHYSICAL REVIEW B, 2003, 67 (08)
[7]   Stress induced phase transitions in silicon [J].
Budnitzki, M. ;
Kuna, M. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2016, 95 :64-91
[8]   Deforamtion mechanisms at pop-out in monocrystalline silicon under nanoindentation [J].
Chang, L. ;
Zhang, L. C. .
ACTA MATERIALIA, 2009, 57 (07) :2148-2153
[9]   Nontrivial nanostructure, stress relaxation mechanisms, and crystallography for pressure-induced Si-I → Si-II phase transformation [J].
Chen, Hao ;
Levitas, Valery, I ;
Popov, Dmitry ;
Velisavljevic, Nenad .
NATURE COMMUNICATIONS, 2022, 13 (01)
[10]   Effect of indentation speed on deformation behaviors of surface modified silicon: A molecular dynamics study [J].
Chen, Juan ;
Shi, Junqin ;
Zhang, Meng ;
Peng, Weixiang ;
Fang, Liang ;
Sun, Kun ;
Han, Jing .
COMPUTATIONAL MATERIALS SCIENCE, 2018, 155 :1-10