MULTIFRACTAL ANALYSIS OF THE DIVERGENCE POINTS ASSOCIATED WITH THE GROWTH OF DIGITS IN ENGEL EXPANSIONS

被引:0
作者
Shang, Lei [1 ]
Chen, Yao [1 ]
机构
[1] Nanjing Agr Univ, Coll Sci, Nanjing 550001, Peoples R China
基金
中国国家自然科学基金;
关键词
Multifractal Analysis; Divergence Points; Engel Expansions;
D O I
10.1142/S0218348X24501330
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are concerned with the multifractal analysis of the divergence points in Engel expansions. Let x is an element of (0,1) be an irrational number with Engel expansion < d(1)(x),d(2)(x),d(3)(x),...>. For any 0 <= alpha <= beta <= infinity, let D(alpha,beta):={x is an element of (0,1)\Q: liminf(n ->infinity) logd(n)(x)/log n=alpha, limsup(n ->infinity) logd(n)(x)/logn = beta}. We prove that the Hausdorff dimension of D(alpha, beta) is (alpha-1)/alpha when 1 <= alpha <= infinity , and it is zero when 0 <= alpha < 1. This indicates that the Hausdorff dimension of D(alpha,beta) is independent of beta. A very different phenomenon is shown for the gap of consecutive digits. For any irrational number x is an element of (0,1) and n is an element of N , let Delta(n)(x):=d(n)(x)-d(n-1) with d(0)(x)equivalent to 0. We derive that, for any 0 <= alpha <= beta <= infinity , the set Delta(alpha,beta):={x is an element of (0,1)\Q:liminf(n ->infinity)log Delta(n)(x)/log n=alpha, limsup(n ->infinity)log Delta(n)(x)/log n=beta} has Hausdorff dimension beta/(beta+1).
引用
收藏
页数:8
相关论文
共 14 条
[1]  
Borel E., 1947, CR HEBD ACAD SCI, V225, P773
[2]  
Cardone A., 2004, SCI MATH JPN, V60, P347
[3]  
ERDoS P., 1958, Annales Universitatis L. Eotvos de Budapest, V1, P7
[4]   On the exact rate of convergence of digits in Engel expansions [J].
Fang, Lulu ;
Shang, Lei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
[5]   Hausdorff dimension of certain sets arising in Engel expansions [J].
Fang, Lulu ;
Wu, Min .
NONLINEARITY, 2018, 31 (05) :2105-2125
[6]   On the Lyapunov spectrum for rational maps [J].
Gelfert, Katrin ;
Przytycki, Feliks ;
Rams, Michal .
MATHEMATISCHE ANNALEN, 2010, 348 (04) :965-1004
[7]  
Konjuhovskii V., 1972, MATH USSR SB, V18, P249
[8]   Hausdorff dimensions of some irregular sets associated with β-expansions [J].
Li JinJun ;
Li Bing .
SCIENCE CHINA-MATHEMATICS, 2016, 59 (03) :445-458
[9]   DIVERGENCE POINTS IN SYSTEMS SATISFYING THE SPECIFICATION PROPERTY [J].
Li, Jinjun ;
Wu, Min .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (02) :905-920
[10]   Some exceptional sets in Engel expansions [J].
Liu, YY ;
Wu, J .
NONLINEARITY, 2003, 16 (02) :559-566